Umweltinformationen werden gesucht. Bitte warten...
Filter
filter_list
Filter einstellen
Begrenze die Suche räumlich
search
92.775
Ergebnisse
92.775
Ergebnisse
Anzeigen:
Filter
Ergebnistypen
public
Sulfatgesteinsverbreitung in Niedersachsen 1 : 500 000 – Betrachtungsbereich bis 200 m unter Gelände
Die Übersichtskarte der Sulfatgesteinsverbreitung in Niedersachsen 1 : 500 000 weist Gebiete aus, in denen Sulfatgesteine bis 200 m unter Geländeoberfläche 1.) nicht zu erwarten sind oder 2.) potenziell vorhanden sind. Die Abgrenzung zwischen den beiden Bereichen beruht auf der Bewertung umfassender geowissenschaftlicher Daten, die am Landesamt für Bergbau, Energie und Geologie vorliegen. Dabei werden Gebiete ohne eindeutige Informationen zur Sulfatgesteinsverbreitung im entsprechenden Teufenbereich, ebenso wie Gebiete, in denen die Sulfatgesteine möglicherweise bereits ausgelaugt sind, pauschal in „Sulfatgesteine potenziell vorhanden“ eingestuft. Die Karte wird in regelmäßigen Abständen aktualisiert. Oberflächennah vorkommende Sulfatgesteine (Gips/Anhydrit) stellen eine Gefährdung für Bohrungen dar, da es bei der Bohrungsherstellung zu einer Neuanbindung von Wasser an Sulfat-führende Schichten kommen kann. Diese Wasseranbindung kann zum einen eine Umwandlung von Anhydrit in Gips mit einhergehender Volumenzunahme und Geländehebung zur Folge haben und zum anderen zu Subrosion führen. Die Volumenzunahme durch die Anhydrit-Gips-Umwandlung nimmt mit zunehmender Überlagerung ab. Die vorliegende Karte basiert auf der Annahme, dass in einer Tiefe von = 200 m unter Geländeoberfläche keine Volumenzunahme mehr zu befürchten ist, die zu Hebungen an der Oberfläche führen könnte. Für detailliertere Informationen zur Subrosion verweisen wir auf die Karte der Geogefahren in Niedersachsen 1 : 25 000 - Erdfall- und Senkungsgebiete (IGG25). Die Karte basiert im Wesentlichen auf der Geologischen Karte 1 : 50 000 (GK50), dem Geotektonischen Atlas 3D (GTA3D) sowie den Bohrdaten aus der Kohlenwasserstoff-Datenbank und der Bohrdatenbank Niedersachsen. Für die Erstellung der Karte wurden die Sulfat-führenden stratigraphischen Einheiten Münder Mergel (Malm), Mittlerer Keuper, Mittlerer Muschelkalk, Oberer Buntsandstein, Zechstein und Rotliegend berücksichtigt. Im Rahmen der Kartenerstellung wurden die Informationen aus diesen unterschiedlichen Datenquellen kombiniert und unter Verwendung weiterer geologischer Daten (siehe „Informationen zu den Daten“) miteinander abgeglichen.
settings
Hydrogeologische Übersichtskarte von Niedersachsen 1 : 200 000 - Basis des oberen Grundwasserleiterkomplexes (WMS Dienst)
Die Karte "Basis des oberen Grundwasserleiterkomplexes" verdeutlicht die großräumige Verbreitung und die Tiefenlage (in Meter zu NN) des oberen überregional bedeutenden Grundwasserleiterkomplexes. Je nach Informationsdichte werden die Angaben zur Tiefenlage mehr oder weniger stark zusammengefasst. Sind innerhalb einer Farbfläche nur teilweise weitere Untergliederungen möglich, erscheinen diese Tiefeninformationen als farbige Linien in den Flächen. Als Grundwasserleiter werden bei dieser Kartendarstellung alle Sande (bis in den Feinstsandbereich) und Kiese eingestuft, deren Schluff- oder Tongehalt unter 5% liegt. So wird auf Grund der Schichtbeschreibung z.B. ein sehr schwach schluffiger Feinsand noch als Grundwasserleiter angesprochen, während ein schwach schluffiger Feinsand als gering wasserleitend bezeichnet wird. In den Lockergesteinsgebieten Niedersachsens werden großräumig zwei übergeordnete Grundwasserleiterkomplexe unterschieden. Der obere Grundwasserleiterkomplex setzt sich aus Sanden und Kiesen des Pleistozän sowie aus Sanden des Pliozän und des Obermiozän zusammen. Der untere Grundwasserleiterkomplex besteht aus durchlässigen Sedimenten des Unter- bis Mittelmiozän, den sog. Braunkohlensanden. Getrennt werden die beiden Grundwasserleiterkomplexe durch den Grundwasserhemmer Oberer Glimmerton, der aus schluffig-tonigen Sedimenten des Mittel- bis Obermiozän besteht. In den Gebieten, in denen als trennende Zwischenschicht (Grundwasserhemmer) der Obere Glimmerton fehlt, ist - großräumig betrachtet - in der Regel nur ein Grundwasserleiterkomplex ausgebildet. Dieser Fall tritt sowohl im Bereich tief eingeschnittener Rinnen, als auch im Bereich stark herausgehobener Salzstöcke auf. Im östlichen Teil von Niedersachsen ist der Obere Glimmerton flächenhaft abgetragen worden. Im Kartenbild wird daher in diesen Gebieten nur ein Grundwasserleiterkomplex dargestellt und als oberer Grundwasserleiterkomplex bezeichnet, obwohl ihm in diesen Gebieten auch die durchlässigen Sedimente der Braunkohlensande, die sonst den unteren Grundwasserleiterkomplex bilden, zugerechnet werden. Die Basis des oberen Grundwasserleiterkomplexes bildet also entweder der Obere Glimmerton oder, bei dessen Fehlen, untermiozäne bis oligozäne Tone und Schluffe. Auf der Karte werden in der Farbskala zwei Bereiche unterschieden: 1. Gebiete, in denen der Aquiferkomplex ungegliedert ist, weil entweder die Trennschicht Glimmerton fehlt oder ein unterer untermiozäner Grundwasserleiter nicht ausgebildet ist. 2. Gebiete, in denen der Aquiferkomplex gegliedert ist, d.h. der Obere Glimmerton ist großflächig verbreitet und trennt ein oberes von einem unteren Stockwerk. Es ist möglich, dass regional andere geringdurchlässige Sedimente, wie z.B. quartäre Beckentone, die Funktion von trennenden Zwischenschichten übernehmen können, die dann eine räumlich begrenzte Aufteilung des Grundwasserleiterkomplexes in zwei oder mehrere Grundwasserstockwerke bewirken. Auf Grund der vorliegenden Daten lassen sich aber zu wenig Aussagen über die flächenhafte Verbreitung von gering durchlässigen quartären Sedimenten machen, da sie nicht wie der Glimmerton über größere Bereiche eine konstante Erscheinungsform aufweisen, sondern in ihrer Fazies auch über kurze Distanzen sehr unterschiedlich ausgebildet sein können. Daher können sie in dieser Übersichtskarte nicht berücksichtigt werden, obwohl sie für die regionale Grundwasserhydraulik oft eine große Bedeutung haben. Die Mächtigkeit des oberen Grundwasserleiterkomplexes wird in einer separaten Karte dargestellt.
settings
Hydrogeologische Karte von Niedersachsen 1 : 50 000 – Änderung der mittleren jährlichen Grundwasserneubildungsrate für den 30-jährigen Zeitraum 2031-2060 zu 1971-2000 im hydrologischen Winterhalbjahr, Kein-Klimaschutz-Szenario (RCP8.5) (WMS Dienst)
Die Karte zeigt die modellierte Änderung der mittleren jährlichen Grundwasserneubildung für den 30-jährigen Zeitraum 2031-2060 zu 1971-2000 im hydrologischen Winterhalbjahr (Nov.-Apr.) in mm/a berechnet mit dem „Kein-Klimaschutz“-Szenario (RCP8.5). Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche Klimaprojektionsdaten genutzt. Die Klimaprojektionsdaten stellen die Ergebnisse eines Ensembles aus verschiedenen Klimamodellen dar (das Niedersächsische Klimaensemble AR5-NI v2.1 siehe Hajati et al. (2022)). Die Daten wurden vom Deutschen Wetterdienst bereitgestellt. Datengrundlage dessen ist das EURO-CORDEX Ensemble (Jacob et al., 2014). Im Rahmen des BMVI-Expertennetzwerks fand durch den DWD eine Herunterskalierung von einem 12,5 km auf ein 5 km Raster statt. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden. Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 500 x 500 m Raster für mGROWA22 herunterskaliert.
public
Bodenklassenübersichtskarte für Erdarbeiten nach DIN18300:2012-09 (ZURÜCKGEZOGEN) 1 : 50 000 - Vorherrschende Bodenklasse von 1 bis 2m
Seit 2015 sind nach der VOB bzw. DIN 18300:2016-09 projektspezifisch zu definierende Homogenbereiche anstatt der bisher allgemein definierten Bodenklassen festzulegen. Für diese Homogenbereiche sind die gemäß DIN 18300:2016-09 vorgegebenen Eigenschaften und Kennwerte sowie deren Bandbreite anzugeben, die ggf. gezielte Feld- und Laboruntersuchungen erfordern. Homogenbereiche können i.d.R. erst mit den Planungen und den Angaben zu Verfahrenstechniken festgelegt werden. Da in vielen bestehenden Planungen/Bauvorhaben die „Bodenklassen nach DIN 18300:2012-09“ verwendet wurden und in Altprojekten tlw. noch verwendet werden, wird die Bodenklassenübersichtskarte nach DIN 18300:2012-09 für einen Übergangszeitraum weiter dargestellt. Für die Planung, Kalkulation und Abrechnung von Erdarbeiten wurden die anstehenden Sedimente und Gesteine nach den Allgemeinen Technischen Vertragsbedingungen für Bauleistungen (ATV) in der Vergabe- und Vertragsordnung für Bauleistungen (VOB) in so genannte Bodenklassen eingeteilt. Für Erd- und Felsarbeiten gemäß DIN 18300:2012-09 galten die in dieser DIN enthaltenen Bodenklasseneinstufungen. Bodenklasse 1: Oberboden Bodenklasse 2: Fließende Bodenarten Bodenklasse 3: Leicht lösbare Bodenarten Bodenklasse 4: Mittelschwer lösbare Bodenarten Bodenklasse 5: Schwer lösbare Bodenarten Bodenklasse 6: Leicht lösbarer Fels und vergleichbare Bodenarten Bodenklasse 7: Schwer lösbarer Fels Für Vorplanungszwecke wurden vom LBEG flächendeckend Karten der Bodenklassen für Erdarbeiten nach DIN 18300:2012-09 im Maßstab 1:50.000 bis in 2 m Tiefe (ab GOK) aus der in Niedersachsen flächendeckend vorhandenen Bodenkarte von Niedersachsen 1:50.000 (BK50) abgeleitet. Die in der BK50 dargestellten Flächeneinheiten beruhen auf einem für die Fläche typischen Bodenprofil. Den darin enthaltenen Bodenarten wurden entsprechende Bodengruppen nach DIN 18196, Bodenklassifikation für bautechnische Zwecke, zugeordnet. Die Bodengruppen und Festgesteine wurden nach den Zuordnungskriterien der DIN 18300:2012-09 den entsprechenden Bodenklassen zugeteilt. Dargestellt werden die jeweils höchste Bodenklasse in den Tiefenprofilen: 0 m bis 1 m, sowie 1 m bis 2 m und die vorherrschenden Bodenklassen (Gewichtung nach der Mächtigkeit, max. 3 Klassen bei gleicher Gewichtung) in den Tiefenprofilen: 0 m bis 1 m, 1 m bis 2 m, sowie 0 m bis 2 m. Die tatsächlichen Verhältnisse können von der maßstabsbedingt homogenisierten Kartendarstellung abweichen. So sind beispielsweise – in den Auesedimenten der Elbe, Leine und Weser (Bodenklasse 2 und 4) – lokal geringmächtige Blocklagen bekannt, die den Bodenklassen 5 oder 6 zuzuordnen wären. Es wird darauf hingewiesen, dass die "Bodenklassenübersichtskarte für Erdarbeiten nach DIN 18300:2012-09 1:50 000" eine geotechnische Erkundung des Baugrundes nach DIN EN 1997 2:2010-10 mit ergänzenden Regelungen DIN 4020:2010-12 und nationalem Anhang DIN EN 1997 2/NA:2010-12 nicht ersetzen kann.
settings
Hydrogeologische Übersichtskarte von Niedersachsen 1 : 500 000 - Durchlässigkeiten der oberflächennahen Gesteine (WMS Dienst)
Die Karte zeigt die Durchlässigkeit der oberflächennahen Gesteine im Maßstab 1:500 000. Die Gesteinseinheiten der Geologischen Übersichtskarte 1:500.000 (GUEK500) sind in vier Durchlässigkeitsgruppen eingeteilt worden, die nach einer groben Einschätzung der effektiven Hohlraumanteile und unter Nutzung der vorhandenen Informationen aus hydraulischen Untersuchungen abgegrenzt wurden. Diese Einschätzung orientiert sich an der Klassifikation der Gebirgsdurchlässigkeiten, wie sie die Arbeitsgruppe Hydrogeologie der Staatlichen Geologischen Dienste in ihrer Hydrogeologischen Kartieranleitung gegeben hat (Grimmelmann et al. 1997). Die grobe Zuordnung der Durchlässigkeitsbeiwerte wird wie folgt vorgenommen: - Durchlässigkeit gering entspricht Durchlässigkeitsbeiwerten von kf < 1*10-5 [m/s], - Durchlässigkeit mittel entspricht der Bandbreite der Durchlässigkeitsbeiwerte von kf = 1*10-5 [m/s] bis kf = 1*10-4 [m/s], - Durchlässigkeit hoch entspricht Durchlässigkeitsbeiwerten von kf > 1*10-4 [m/s] und - Durchlässigkeit stark variabel bedeutet, der entsprechende Gesteinskomplex weist derart unterschiedliche Eigenschaften auf, dass er keiner Gruppe eindeutig zugeordnet werden kann. Die hier vorliegende Karte entstand durch eine Umattributierung der Inhalte der Geologischen Übersichtskarte von Niedersachsen 1 : 500 000 und berücksichtigt somit in der Regel nur einen Tiefenbereich von ca. 2 m unter Geländeoberkante.
settings
Kohlenstoffreiche Böden in Niedersachsen 1: 50 000 mit versiegelten Flächen - Bodentypbeschreibung (WMS Dienst)
Die Bodentypenkarte stellt die Böden mit kohlenstoffreichen Horizonten (Moorböden und Böden mit Torfhorizonten) dar und weist über 30 Bodentypen aus. Bei einigen Einheiten werden die kohlenstoffreichen Horizonte nicht im Bodentyp genannt, obwohl sie bestimmend für den Bodentyp sind. In diesen Fällen kommen die kohlenstoffreichen Horizonte i. d. R. erst in tieferen Profilabschnitten vor. Insgesamt werden in der Karte etwa 150 Bodenformen (Bodentyp plus Substrat mit unterschiedlichen Mächtigkeiten = Legendeneinheiten) ausgewiesen. Die Bodenkarte BK50 beschreibt die Verbreitung der Böden von Niedersachsen in einem Maßstab von 1 : 50.000 nach neustem Stand der beim LBEG vorliegenden Bodeninformationen. Die Bodenkarte weist für ihren Maßstab eine relativ hohe räumliche Differenzierung der Bodentypen auf und berücksichtigt die zum Zeitpunkt der Erstellung aktuellsten Kenntnisse über die Verbreitung der Moore unter Einbeziehung der Vererdungsstufen und Moorfolgeböden sowie von Kulturböden wie z. B. Tiefumbrüchen, Plaggeneschen, Spittkulturböden, Marschhufenböden. Moorböden sind besonders dynamisch und verändern sich schnell durch kulturtechnische Maßnahmen. Durch Entwässerung entsteht ein aerober Bereich im Torfkörper, der Prozesse wie Sackung, Torfschrumpfung und -zersetzung in Gang bringt und zu einem Verlust an Torfmächtigkeit (Vererdungsprozesse im Moor) führt. Die vorliegende Karte kann diese Änderungen nur zeitlich verzögert abbilden. Es wird darauf hingewiesen, dass es sich bei der Karte um eine Übersichtsdarstellung handelt. Sie kann dazu dienen, sich einen Überblick über die kohlenstoffreichen Böden Niedersachsens zu verschaffen oder auch Suchräume auszuweisen. Dagegen kann sie keine Grundlage für flächenscharfe, regionale Aussagen sein.
public
Hydrogeologische Karte von Niedersachsen 1 : 50 000 - Lage der Grundwasseroberfläche
Die Lage der Grundwasseroberfläche, bzw. der Grundwasserdruckfläche bei gespanntem Grundwasser, wird üblicherweise durch Grundwassergleichen (Isohypsen) dargestellt. Das Kartenthema zeigt die Grundwasseroberfläche des ersten großräumig verbreiteten Grundwasserstockwerks für alle Lockergesteinsgebiete Niedersachsens. Dichteunterschiede wurden nicht berücksichtigt. In den Festgesteinsgebieten des südlichen Niedersachsens ist diese Art der Darstellung nicht praktikabel, da ein flächenhaft verbreiteter, räumlich zusammenhängender Grundwasserkörper dort meist nicht existiert. Das Grundwasser bewegt sich im Festgestein in Kluft- und Störungssystemen oder Karsthohlräumen. Obwohl die Grundwasservorkommen im Festgestein, z.B. in Karstgebieten, durchaus beachtlich sein können, sind sie mit Grundwassergleichen in diesem Maßstab nicht sinnvoll darstellbar. Diese Bereiche sind auf der Karte als Festgestein gekennzeichnet. Im niedersächsischen Küstengebiet werden die Grundwasserstände durch die tidebedingt wechselnde Höhe des Meerwasserspiegels und durch Maßnahmen der künstlichen Entwässerung (Schöpfwerke, Siele) stark beeinflusst. Im Bereich von Schöpfwerken und Unterschöpfwerken kann die Grundwasserfließrichtung von der Küste weg in Richtung Binnenland verlaufen. In unmittelbarer Nähe zur Küstenlinie wechselt die Grundwasserfließrichtung je nach Stand der Tide. Die Grundwasserhöhengleichen werden hier nur stark generalisiert dargestellt. Zur Konstruktion der Grundwassergleichen werden im Allgemeinen zeitgleich durchgeführte Grundwasserstandsmessungen an allen Messstellen zugrunde gelegt (Stichtagsmessungen). Die vorliegende Darstellung beruht auf Stichtagsmessungen vom Januar 1993 und stellt einen mittleren Grundwasserstand der Zeitreihe von 1990 – 2000 dar. Den Stichtagsmessungen der Kartenserie liegen Grundwasserstandsdaten des Gewässerkundlichen Landesdienstes zu Grunde, die mit Erlaubnis des Niedersächsischen Landesbetriebes für Wasserwirtschaft, Küsten- und Naturschutz verwendet wurden. Zusätzlich dazu wurden teilweise Daten von Wasserversorgungsunternehmen zur Verfügung gestellt. Da das Raster aus Stichtagsmessungen keine ausreichende Belegdichte aufweist, wurde der Datenbestand, soweit es fachlich vertretbar schien, um Grundwasserstandsmessungen aus anderen Zeiträumen ergänzt. Diese Daten stammen aus der Bohrdatenbank oder aus Archivunterlagen des LBEG. In Gebieten mit hohen Schwankungen des Grundwasserspiegels wurde diese Ergänzung nicht vorgenommen. Im Bereich von Stauchmoränen weisen die Grundwasserabstände, bedingt durch den sehr heterogenen geologischen Aufbau dieser Gebiete, eine große Variabilität auf. Hier können die Grundwassergleichen nur die großräumige Strömungsrichtung darstellen. In Gebieten mit sehr geringer Belegpunktdichte können die tatsächlichen Wasserstände vor Ort von der Kartendarstellung unter Umständen abweichen. Um die Liniendarstellung der Grundwassergleichen anschaulicher zu gestalten, sind die von ihnen eingeschlossenen Flächen farbig hinterlegt. Die Farbflächen geben die Lage der Grundwasseroberfläche, bzw. der Grundwasserdruckfläche in Intervallen zu jeweils 2,5 m in Metern zu NN an. Der Grundwassergleichenplan ist geeignet, großräumig die Strömungsrichtungen und die Potenzial-gefälleverhältnisse des Grundwassers in den Lockergesteinsgebieten zu verdeutlichen. Für detaillierte Aussagen sind unter Umständen Karten mit einer höheren Belegdichte an Stichtagsmessungen erforderlich.
public
Bericht: "Umsetzung WRRL: Ems-Dollart-Ästuar – Projektabschlussbericht (2005)"
„Veranlassung des Vorhabens: Zur Umsetzung der EG-Wasserrahmenrichtlinie (WRRL) ist eine ökologische Bewertung der Übergangs- und Küstengewässer vorzunehmen. Aufbauend auf den vorangegangenen Projekten "Studie zur Ermittlung von Hintergrundwerten bzw. der natürlichen Variabilität von chemischen und biologischen Messgrößen im Meeresmonitoring, Teilbereich Nordsee" (HEIBER et al. 2004) und "Charakterisierung der deutschen Nord und Ostsee-Küstengewässer vor dem Hintergrund internationaler Vereinbarungen – Teil Nordsee" (BMBF) (AQUA-MARIN 2003a) arbeitete das vorliegende Projekt zu Bewertungskonzepten für biologische Qualitätskomponenten mit dem Schwerpunkt im Übergangsgewässer des Ems-Dollart-Ästuars. Für die Darstellung und Bewertung des aktuellen ökologischen Zustands sollen Vorschläge zur Einstufung der Qualitätskomponenten nach den Maßgaben der EG-WRRL erarbeitet werden. Im vorgegebenen Zeitrahmen der EG-WRRL sind die Bewertungssysteme bis zum Jahr 2006 vorzulegen. Parallel dazu bzw. anschließend sind Monitoringkonzepte zur Weiterführung und Validierung der Bewertungskonzepte zu erarbeiten, bzw. bestehende Monitoringkonzepte an die Aufgaben der WRRL anzupassen. Das Bearbeitungsgebiet Ems-Dollart-Ästuar (siehe Kap. 2.2) wird über die Grenzgewässerkommission gemeinsam von deutscher und niederländischer Seite verwaltet. Daraus ergibt sich eine Bearbeitung der von der WRRL vorgegebenen Umsetzungsschritte und Berichtspflichten ebenfalls unter bilateraler Abstimmung. Aus dieser Zusammenarbeit liegt bereits der zur Erfüllung der Berichtspflichten gegenüber der EU gemeinsam erarbeitete „Bericht 2005“ – Bestandsaufnahme gemäß Artikel 5 der EGWasserrahmenrichtlinie (2000/60/EG) – Bearbeitungsgebiet Ems-Dollart–Ästuar – vor (GRENZGEWÄSSERKOMMISSION 2005). In den bilateralen Abstimmungsprozess flossen über die AG Wasserqualität als Unterarbeitsgruppe der Ständigen Deutsch-Niederländischen Grenzgewässerkommission, Unterausschuss G (Ems-Dollart) Ergebnisse aus dem vorliegenden Projekt ein.“
public
GEMAS – Geochemische Kartierung der Acker- und Grünlandböden Europas, Einzelelementkarten, Pr - Praseodym
GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soil in Europe) ist ein Kooperationsprojekt zwischen der Expertengruppe „Geochemie“ der europäischen geologischen Dienste (EuroGeoSurveys) und Eurometeaux (Verbund der europäischen Metallindustrie). Insgesamt waren an der Durchführung des Projektes weltweit über 60 internationale Organisationen und Institutionen beteiligt. In den Jahren 2008 und 2009 wurden in 33 europäischen Ländern auf einer Fläche von 5 600 000 km² insgesamt 2219 Ackerproben (Ackerlandböden, 0 – 20 cm, Ap-Proben) und 2127 Grünlandproben (Weidelandböden, 0 – 10 cm, Gr-Proben) entnommen. In den Proben wurden 52 Elemente im Königswasseraufschluss, 41 Elemente als Gesamtgehalte sowie TC und TOC bestimmt. Ergänzend wurde in den Ap-Proben zusätzlich 57 Elemente in der mobilen Metallionenfraktion (MMI®) sowie die Bleiisotopenverhältnisse untersucht. Alle analytischen Untersuchungen unterlagen einer strengen externen Qualitätssicherung. Damit liegt erstmals ein qualitätsgesicherter und harmonisierter geochemischer Datensatz für die europäischen Landwirtschaftsböden mit einer Belegungsdichte von einer Probe pro 2 500 km² vor, der eine Darstellung der Elementgehalte und deren Bioverfügbarkeit im kontinentalen (europäischen) Maßstab ermöglicht. Die Downloaddateien zeigen die flächenhafte Verteilung der mit verschiedenen Analysenmetoden bestimmten Elementgehalte in Form von farbigen Isoflächenkarten mit jeweils 7 und 72 Klassen.
Die Karte zeigt die mittlere monatliche Grundwasserneubildung für den Monat August im 30-jährigen Zeitraum 1991-2020. Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche gemessene und anschließend räumlich interpolierte Klimabeobachtungsdaten des Deutschen Wetterdienstes genutzt. Diese sind die potenzielle Verdunstung, die auf Grundlage der FAO-Grasreferenzverdunstung berechnet wurde (DWD, unveröffentlicht) und der Niederschlag basierend auf dem REGNIE-Produkt (Rauthe et al, 2013), welche nach Richter korrigiert wurden (Richter, 1995). Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 100 x 100 m Raster für mGROWA22 herunterskaliert.