Umweltinformationen werden gesucht. Bitte warten...
Filter
filter_list
Filter einstellen
Begrenze die Suche räumlich
search
21.310
Ergebnisse
21.310
Ergebnisse
Anzeigen:
public
Abschätzung der potenziellen Erosionsgefährdung durch Wasser – Basisraster Hamburg
Ausweisung der potenziellen Erosionsgefährdung durch Wasser gemäß § 16, Anlage 3 der GAP-Konditionalitäten-Verordnung auf Rasterebene im 10 m Raster für das Bundesland Hamburg. Die Berechnung der potenziellen Wassererosionsgefährdung erfolgt in Anlehnung an DIN 19708 (Bodenbeschaffenheit – Ermittlung der Erosionsgefährdung von Böden durch Wasser mit Hilfe der ABAG, 2022) auf Rasterebene im 10 m Raster durch Multiplikation von - Bodenerodierbarkeitsfaktor (K-Faktor) nach Gleichung 3 bis Gleichung 10. Bodenart, Humusgehalt und Skelettanteil des Oberbodens stammen aus der Bodenübersichtskarte 1:200.000 (BUEK200), - Regenfaktor (R-Faktor) gem. Nummer 4.2 aus der vom DWD bereitgestellten Karte der R-Faktoren für das Zentraljahr 2021, - Hangneigungsfaktor (S-Faktor) gemäß Anhang D auf Basis des DGM10 (10 m) sowie einem pauschalen Hangneigungsfaktors 2 für eine Standardhanglänge von ca. 100 m. Für jede Rasterzelle wird eine potenzielle Wassererosionsgefährdung ermittelt.
settings
Abschätzung der potenziellen Erosionsgefährdung durch Wasser – Basisraster Hamburg (WMS Dienst)
Ausweisung der potenziellen Erosionsgefährdung durch Wasser gemäß § 16, Anlage 3 der GAP-Konditionalitäten-Verordnung auf Rasterebene im 10 m Raster für das Bundesland Hamburg. Die Berechnung der potenziellen Wassererosionsgefährdung erfolgt in Anlehnung an DIN 19708 (Bodenbeschaffenheit – Ermittlung der Erosionsgefährdung von Böden durch Wasser mit Hilfe der ABAG, 2022) auf Rasterebene im 10 m Raster durch Multiplikation von - Bodenerodierbarkeitsfaktor (K-Faktor) nach Gleichung 3 bis Gleichung 10. Bodenart, Humusgehalt und Skelettanteil des Oberbodens stammen aus der Bodenübersichtskarte 1:200.000 (BUEK200), - Regenfaktor (R-Faktor) gem. Nummer 4.2 aus der vom DWD bereitgestellten Karte der R-Faktoren für das Zentraljahr 2021, - Hangneigungsfaktor (S-Faktor) gemäß Anhang D auf Basis des DGM10 (10 m) sowie einem pauschalen Hangneigungsfaktors 2 für eine Standardhanglänge von ca. 100 m. Für jede Rasterzelle wird eine potenzielle Wassererosionsgefährdung ermittelt.
public
Bericht: "Makrozoobenthos: Greetsieler Fahrwasser (1954)"
Im Frühjahr 1954 wurde das Watt zu beiden Seiten des Greetsieler Fahrwassers biologisch kartiert. Zweck der Untersuchung war, aus biologischer Sicht ein Urteil über die Bodenverhältnisse zu erhalten. Die durch das Greetsieler Außentief getrennten Wattflächen sind in der Besiedlung und in der Bodenbeschaffenheit im Prinzip völlig gleichwertig. Auf der östlichen Seite sind die Mischwatten stärker vertreten als auf der westlichen. Es hat sich noch kein biologisches Gleichgewicht eingestellt. Außer in der Gegend der Myathanatocoenose ist überall eine langsame, ziemlich gleichförmige Verschlickung (Auftragung) festzustellen. In der nordwestlichen Spitzenregion geht die Auftragung langsamer vor sich, da diese Fläche der Wasserbewegung am unmittelbarsten ausgesetzt ist. Von Osten her dringt die Verlandungsregion in das Watt vor.
public
Gehalte an organischer Substanz in Oberböden Deutschlands 1:1.000.000
Die Karte der Gehalte an organischer Substanz in Oberböden Deutschlands 1:1.000.000 visualisiert die Ergebnisse der deutschlandweiten Zusammenstellung von typischen Gehalten an organischer Substanz der Oberböden differenziert nach 15 Bodenausgangsgesteinsgruppen, der Landnutzung und vier Klimaregionen. Die Auswertung basiert auf mehr als 9000 Bodenprofilen, zu denen qualitätsgesicherte Daten zur organischen Substanz aus einem zwanzigjährigen Zeitraum vorlagen. Das methodische Vorgehen ist in dem Bericht 'Gehalte an organischer Substanz in Oberböden Deutschlands', BGR Archiv, Nr. 0127036 dokumentiert. Die in der Karte dargestellten Klassen entsprechen der Klasseneinteilung in der Bodenkundlichen Kartieranleitung (KA5), wobei die Klassen h2–h5 der KA5 jeweils in der Klassenmitte geteilt wurden. Damit gibt die Karte insbesondere in den Klassen geringer Gehalte ein differenzierteres Bild wider.
public
3D-Modelle des Lockergesteins in Niedersachsen - Göttingen
Das geologisch-geotechnische 3D-Modell des quartären Untergrunds des Stadtgebiet Göttingens wurde in den Jahren 2004 bis 2009 im Rahmen einer Kooperation des Landesamtes für Bergbau, Energie und Geologie mit dem Geowissenschaftlichen Zentrum der Universität Göttingen konstruiert. Betrachtet wurde ein 54 km² großes Gebiet im Leinetal, das den dicht besiedelten Bereich des Stadtkreises Göttingen sowie den Nordteil der Gemeinde Rosdorf umfasst. In diesem 3D-Modell sind Informationen aus mehr als 3000 Bohrungen sowie geologischen, bodenkundlichen und geomorphologischen Kartenwerken vereinigt. Der geologisch komplexe Aufbau des quartären Untergrundes Göttingens – geprägt durch die quartärzeitlichen Ablagerungsbedingungen, Salztektonik und Subrosionsprozesse – wird anhand der vereinfachten aber widerspruchsfreien 3D-Modellierung nachvollziehbar.
settings
3D-Modelle des Lockergesteins in Niedersachsen - Göttingen (WMS Dienst)
Das geologisch-geotechnische 3D-Modell des quartären Untergrunds des Stadtgebiet Göttingens wurde in den Jahren 2004 bis 2009 im Rahmen einer Kooperation des Landesamtes für Bergbau, Energie und Geologie mit dem Geowissenschaftlichen Zentrum der Universität Göttingen konstruiert. Betrachtet wurde ein 54 km² großes Gebiet im Leinetal, das den dicht besiedelten Bereich des Stadtkreises Göttingen sowie den Nordteil der Gemeinde Rosdorf umfasst. In diesem 3D-Modell sind Informationen aus mehr als 3000 Bohrungen sowie geologischen, bodenkundlichen und geomorphologischen Kartenwerken vereinigt. Der geologisch komplexe Aufbau des quartären Untergrundes Göttingens – geprägt durch die quartärzeitlichen Ablagerungsbedingungen, Salztektonik und Subrosionsprozesse – wird anhand der vereinfachten aber widerspruchsfreien 3D-Modellierung nachvollziehbar.
Digitaler Datenbestand des Berechnungsergebnisses Lnight 2023 für die erweiterte Lärmkartierung (ENDPlus). Die Berechnung des Pegels Lnight erfolgte nach der Berechnungsmethode für den Umgebungslärm von bodennahen Quellen (BUB), die das europaweit einheitliche Berechnungsverfahren CNOSSOS-EU in nationales Recht umsetzt. Ermittelt werden diese Pegel rechnerisch in einer Höhe von 4m über Grund und in einem Raster von 10 x 10 m. Als akustische Quelle dient das Straßennetz mit nächtlichem Verkehr, welches ebenfalls unter dem Namen „Hauptverkehrsstr. und sonst. Str. (PLUS)“ auf diesem Kartenserver vorliegt. Die Darstellung erfolgt in 5 dB Klassen gemäß Legende. Die Geometrie des Pegelrasters liegt in UTM- Koordinaten vor.
public
Physiologische Gründigkeit der Böden Deutschlands
Die Karte der physiologischen Gründigkeit der Böden in Deutschland gibt einen Überblick über die Mächtigkeit des durchwurzelbaren Raumes unterhalb der Erdoberfläche. Die physiologische Gründigkeit beschreibt die Durchwurzelbarkeit des Bodens. Sie wird durch festes Gestein, verfestigte Bänke und Horizonte sowie von anstehendem Grundwasser begrenzt. Die Karte basiert auf der Auswertung der nutzungsdifferenzierten Bodenübersichtskarte 1:1.000.000 (BUEK1000N) und zeigt den metrischen Wert der Gründigkeit in klassifizierter Form an. Die Methode ist aus der Bodenkundlichen Kartieranleitung (KA5) abgeleitet und im MethodenWIKI des FISBo BGR dokumentiert. Zur nutzungsabhängigen Differenzierung der Profildaten werden die Landnutzungsdaten aus CORINE Land Cover 2006 genutzt.
settings
Physiologische Gründigkeit der Böden Deutschlands (WMS)
Die Karte der physiologischen Gründigkeit der Böden in Deutschland gibt einen Überblick über die Mächtigkeit des durchwurzelbaren Raumes unterhalb der Erdoberfläche. Die physiologische Gründigkeit beschreibt die Durchwurzelbarkeit des Bodens. Sie wird durch festes Gestein, verfestigte Bänke und Horizonte sowie von anstehendem Grundwasser begrenzt. Die Karte basiert auf der Auswertung der nutzungsdifferenzierten Bodenübersichtskarte 1:1.000.000 (BUEK1000N) und zeigt den metrischen Wert der Gründigkeit in klassifizierter Form an. Die Methode ist aus der Bodenkundlichen Kartieranleitung (KA5) abgeleitet und im MethodenWIKI des FISBo BGR dokumentiert. Zur nutzungsabhängigen Differenzierung der Profildaten werden die Landnutzungsdaten aus CORINE Land Cover 2006 genutzt.
Digitaler landesweiter Datenbestand der relevanten lichtzeichengeregelten Knotenpunkte, welche zur Berechnung der Lärmkarten 2022 nach EU-Umgebungslärmrichtlinie (2002/49/EG, 34. BImSchV) genutzt werden. Der Sachdatenbestand enthält die für eine Lärmberechnung nach BUB (Berechnungsmethode für den Umgebungslärm von bodennahen Quellen) relevanten Attribute für jedes Element. Die Geometrie soll jeweils den zentralen Knotenpunkt der Ampelkreuzung repräsentieren und ist in der Detaillierung an die akustischen Erfordernisse und die Modellbildung angepasst. Die Ampelkreuzungen der Ballungsräume Hannover, Hildesheim, Braunschweig, Osnabrück, Oldenburg und Göttingen sind nicht Bestandteil dieses Datensatzes, dies gilt ebenso für die zum Bundesland Bremen zugehörigen Ampelkreuzungen.