Umweltinformationen werden gesucht. Bitte warten...
Filter
filter_list
Filter einstellen
Begrenze die Suche räumlich
search
92.857
Ergebnisse
92.857
Ergebnisse
Anzeigen:
Filter
Ergebnistypen
public
Geologische Übersichtskarte der Bundesrepublik Deutschland 1:200.000 (GÜK200) - CC 4726 Goslar
Blatt Goslar zeigt einen sehr interessanten Ausschnitt der Geologie Deutschlands. Im zentralen Teil der Karte ist der Harz, im Norden das Harzvorland mit Subherzyner Senke und im Süden das Thüringer Becken erfasst. Der Harz zählt zu den Mittelgebirgen aus variszisch verfaltetem und verschiefertem Paläozoikum. Ein Großteil der geologischen Einheiten und Störungen streicht Südwest-Nordost. Die Platznahme der magmatischen Intrusivkomplexe (Brocken-, Ramberg- und Oker-Granit bzw. Bad Harzburger Gabbro) fand im Unterkarbon statt, während die Vulkanite bei Ilfeld ("Ilfelder Porphyrit" bzw. "Ilfelder Melaphyr") im Perm aufdrangen. Der Harz kann in drei Zonen gegliedert werden. Zum Oberharz zählen die Clausthaler Kulmfalten-Zone, der Oberharzer Devonsattel sowie die Acker-Bruchberg-Zone zwischen Osterode und Bad Harzburg. Der Mittelharz wird von der Blankenburger Faltenzone mit dem Elbingeröder Komplex, dem Tanner Grauwacken-Zug sowie der Sieber-Mulde gebildet. Zum Unterharz gehören die Harzgeröder Faltenzone (Olisthostrom-Rutschmassen) mit der Selke- und Südharz-Mulde (Gleitdecken) sowie das Epimetamorphikum der Zone von Wippra. Zurückhaltend wurde bei der Darstellung von Störungen verfahren, deren häufiges Auftreten zwar bekannt, deren Verlauf aber oft unsicher ist. Zechstein-Sedimente umranden den Harz, besonders in seiner südlichen bzw. südwestlichen Begrenzung. In der Subherzynen Senke sind kreidezeitliche Sedimente aufgeschlossen, die großflächig von quartärem Löss überlagert sind und von dünnen Ausbissen triassischer Sedimente umrandet werden. Westlich des Harzes zeigt sich der nördliche Leinetal-Graben mit mesozoischen Sedimenten (Keuper bis Malm) und der Erhebung des Rhüdener Sattels, auf dessen Buntsandstein-Formation die niedersächsische Neugliederung des Buntsandsteins beruht. Der Südteil des Blattes wird von der Trias des Eichsfeld-Thüringer Beckens (Keuper bis Buntsandstein) eingenommen, aus dem der Kreide-Ausbiss des Ohmgebirges und die jungpaläozoischen Sedimente des Kyffhäuser-Gebirges mit seinem präkambrischen Kristallinkomplex hervorragen. Auch hier kommt es zu Überlagerungen durch quartäre Lockersedimente, vorwiegend weichselkaltzeitlichem Löss. Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, gewährt ein Profilschnitt Einblicke in den Aufbau des Untergrundes. Von Nord nach Süd kreuzt er das subherzyne Becken, die Harz-Nordrand-Aufschiebung, den Harz mit dem Eckergneis und Brockengranit, das Eichsfeld-Thüringer Becken mit dem Ohmgebirge und der Eichenberg-Gothaer Grabenzone.
Die Suche nach volkswirtschaftlich bedeutenden Bodenschätzen wie z.B. Kohlenwasserstoffe, Stein- und Braunkohle oder Kali- und Steinsalze und deren Gewinnung unterliegen in der Bundesrepublik Deutschland den Vorschriften des Bundesberggesetzes (BBergG). Unterschieden werden dabei „bergfreie“ und „grundeigene“ Bodenschätze. Grundeigene Bodenschätze stehen im Eigentum des Grundeigentümers. Auf bergfreie Bodenschätze erstreckt sich das Eigentum an einem Grundstück nicht. Wer bergfreie Bodenschätze gewinnen (abbauen) will, benötigt dazu eine Bewilligung gemäß § 8 BBergG oder das Bergwerkseigentum gemäß § 9 BBergG. Die Erteilung erfolgt durch die zuständige Behörde. Für die Länder Niedersachsen, Schleswig-Holstein, Hamburg, Bremen und den Festlandsockel der Nordsee ist dies das Landesamt für Bergbau, Energie und Geologie (LBEG). Sowohl Bewilligungen als auch Bergwerkseigentum gewähren das Recht, innerhalb eines bestimmten Feldes Bodenschätze zu gewinnen. Das Bergwerkseigentum ist darüber hinaus ein „grundstücksgleiches“ Recht, das heißt es ist grundbuch- und beleihungsfähig. Das Feld der Bewilligung oder des Bergwerkseigentums ist über Tage flächenmäßig begrenzt und erstreckt sich bis in die „ewige Teufe“, also theoretisch bis zum Erdmittelpunkt. Die Themenkarten „Bewilligungen“ zeige die aktuell vom LBEG vergebenen Bewilligungsgebiete sowohl offshore in der Nordsee als auch onshore auf dem Festlandsockel.
public
Hydrogeologische Karte von Niedersachsen 1 : 50 000 – Mittlere jährliche Grundwasserneubildung des hydrologischen Winterhalbjahres für den 30-jährigen Zeitraum 1971-2000
Die Karte zeigt die mittlere jährliche Grundwasserneubildung des hydrologischen Winterhalbjahres für den 30-jährigen Zeitraum 1971-2000. Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (HERRMANN et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche gemessene und anschließend räumlich interpolierte Klimabeobachtungsdaten des Deutschen Wetterdienstes genutzt. Diese sind die potenzielle Verdunstung, die auf Grundlage der FAO-Grasreferenzverdunstung berechnet wurde (DWD, unveröffentlicht) und der Niederschlag basierend auf dem REGNIE-Produkt (Rauthe et al, 2013), welche nach Richter korrigiert wurden (Richter, 1995). Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 100 x 100 m Raster für mGROWA22 herunterskaliert.
public
Zusammenfassende Darstellung der Ergebnisse der geochemischen Untersuchungen in Deutschland im Zeitraum 1975 - 1986, pH-Wert in Bachwässern, Einzelelementkarten
In den Jahren 1975 – 1986 wurden durch die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) auf dem damaligen Staatsgebiet der Bundesrepublik Deutschland sowie durch das Zentrale Geologische Institut (ZGI) der damaligen DDR im Bereich der an der Erdoberfläche anstehenden bzw. gering von Känozoikum überdeckten präoberpermischen Grundgebirgseinheiten im Südteil der ehemaligen DDR ca. 98.000 Wasser- und 87.500 Sedimentproben aus Bächen und Flüssen entnommen und geochemisch untersucht. Die Ergebnisse dieser Untersuchungen wurden u.a. im „Geochemischen Atlas Bundesrepublik Deutschland“ (Fauth et al., 1985) und im „Abschlussbericht zur vergleichenden Bewertung der Rohstofführung in den Grundgebirgseinheiten der DDR“ (Röllig et al., 1990) dokumentiert. Bei den im Rahmen dieser Untersuchungen erhobenen geochemischen Daten handelt es um in ihrer hohen Probenahmedichte einzigartige flächendeckende geochemische Aufnahmen eines Großteils des Gebietes der heutigen Bundesrepublik Deutschland. Alle späteren geochemischen Untersuchungen (Geochemischer Atlas 2000 sowie im Rahmen von GEMAS und FOREGS) wurden mit einer ungleich geringeren Probenahmedichte durchgeführt. Diese wertvollen und unwiederbringlichen Daten sind seit ihrer digitalen Aufbereitung und Bereitstellung in den Jahren 2022 (Geochemischen Atlas Bundesrepublik Deutschland) und 2023 (Geochemische Prospektion in den Grundgebirgseinheiten im Südteil der ehemaligen DDR) über das Geoportal der BGR allgemein verfügbar. Eine direkte Vergleichbarkeit der für die beiden Teilgebiete bereitgestellten Karten ist jedoch aufgrund der Unterschiede in den bei den Untersuchungen eingesetzten Analysenverfahren (untersuchtes Elementspektrum, Analysenqualität, Bestimmungsgrenzen, …) nicht gegeben. Für einen Teil der untersuchten Elemente und Parameter ist jedoch bei entsprechenden Anpassungen (Bestimmungsgrenzen, darstellbare Gehaltsbereiche, Klasseneinteilung der Kartenlegenden, …) eine zusammenfassende Darstellung der Ergebnisse dieser in ihrer hohen Belegungsdichte einzigartigen geochemischen Untersuchungen möglich. Solche zusammenfassenden Darstellungen werden nun über das Geoportal der BGR erstmals bereitgestellt. Die Downloads zeigen die Verteilung der pH-Werte in Bachwässern in vier verschiedenen farbigen Punkt- und Isoflächenkarten.
settings
Hydrogeologische Karte von Niedersachsen 1 : 50 000 – Mittlere jährliche Grundwasserneubildung für den 30-jährigen Zeitraum 2031-2060, Kein-Klimaschutz-Szenario (RCP8.5) (WMS Dienst)
Die Karte zeigt die modellierte mittlere jährliche Grundwasserneubildungsrate für den 30-jährigen Zeitraum 2031-2060 in mm/a berechnet mit dem „Kein-Klimaschutz“-Szenario (RCP8.5). Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche Klimaprojektionsdaten genutzt. Die Klimaprojektionsdaten stellen die Ergebnisse eines Ensembles aus verschiedenen Klimamodellen dar (das Niedersächsische Klimaensemble AR5-NI v2.1 siehe Hajati et al. (2022)). Die Daten wurden vom Deutschen Wetterdienst bereitgestellt. Datengrundlage dessen ist das EURO-CORDEX Ensemble (Jacob et al., 2014). Im Rahmen des BMVI-Expertennetzwerks fand durch den DWD eine Herunterskalierung von einem 12,5 km auf ein 5 km Raster statt. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden. Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 500 x 500 m Raster für mGROWA22 herunterskaliert.
public
Bericht: "Makrozoobenthos: Niedersächsisches Küstengebiet (1976)"
Die seit etwa 10 Jahren anhaltende industrielle Erschließung des niedersächsischen Küstengebietes, insbesondere der Ästuare von Ems, Jade, Weser und Elbe. ist wegen zunehmender Belastung der Küstengewässer mit industriellen Abfallstoffen Anlass zu ständiger Sorge. [...] Um Verteilung und Verbleib eingeleiteter Schadstoffe und ihre Wirkung auf die Lebensbedingungen des Küstenvorfeldes abschätzen zu können, wurden u.a. Bestandsaufnahmen von Lebensgemeinschaften und ihren ökologischen Bedingungen zu einer dringenden Notwendigkeit. Diese, von der breiten Öffentlichkeit wenig beachteten oder ihr unbekannt gebliebenen Arbeiten haben in den letzten Jahren erheblichen Einblick in die biologisch-ökologischen Gegebenheiten des Küstennahbereiches erbracht und können in ihrer Gesamtheit als Grundlage zur Beurteilung von Veränderungen der Umweltbedingungen dienen. [...] Im niedersächsischen Küstengebiet ist die Zahl der bereits vorhandenen chemischen und biologischen Untersuchungen, auf welche bei vergleichen Arbeiten zurückgegriffen werden kann, nicht unbeträchtlich. Selbst wenn sie ursprünglich unter anderen Fragestellungen und z. T. schon vor längerer Zeit entstanden sind, haben sie im Sinne der hier behandelten Probleme noch ihren aktuellen Wert. Aus diesem Grunde und um das umfangreiche, in Jahrzehnten erarbeitete Grundlagenmaterial besser zugänglich zu machen, werden die den Verfassern, bekannten veröffentlichten und unveröffentlichten Arbeiten hier zusammengestellt (bis Ende 1975). [...] Zur besseren Veranschaulichung wurden die von den einzelnen Untersuchungen des Küstennahbereichs erfassten Gebiete in Karten eingezeichnet für diesen Zweck in folgende thematische Gruppen gegliedert (Blatt 1: Chemische Untersuchungen des Wassers und des Bodens, Blatt 2: Phytoplankton (einzelliges pflanzliches Plankton) und Zooplankton (ein- und mehrzelliges tierisches Plankton), Blatt, 3: Bodenlebende Mikroflora (vorwiegend Diatomeen und aquatische PiIze) und Makroflora (makroskopische Algen, Seegräser, Pionierpflanzen). Bakterien und pathogene Keime in Wasser und Sediment, Blatt 4: Bodenlebende Mikro- und Meiofauna; verschiedene Gruppen einzelliger und mehrzelliger Tiere, Blatt 5: Malkrofauna des Bodens, Blatt 6: Aufwuchs künstlicher Hartböden. Die Karten zeigen die räumlichen Schwerpunkte der bisherigen Untersuchungen und geben gleichzeitig Auskunft über räumlich noch bestehende Lücken. Jedes Untersuchungsgebiet ist mit einem Hinweis auf den Verfasser und das Jahr der Veröffentlichung bzw. der Abschließung eines unveröffentlichten Berichts versehen. [...] Die Übersicht macht deutlich, dass sich die bisherigen Aktivitäten am stärksten auf die Ästuare konzentriert haben. In thematischer Hinsicht nehmen die Bearbeitungen der makroskopischen Bodenfauna den größten Anteil ein und hiervon wiederum entfällt der überwiegende; Teil auf Untersuchungen im Gezeitenbereich des Wattenmeeres. Als schwerwiegendste Lücke sind wohl die mangelnden Daten, und Kenntnisse über Bodenchemie, Bodenbakteriologie, Plankton sowie Mikro- und Meiofauna den Bodens zu bewerten. Diese Zusammenstellung von biologischen und chemischen Untersuchungen desniedersächsischen Küstenbereichs darf daher nicht darüber hinwegtäuschen, dass trotz reichhaltigenGrundlagenmaterials und erheblicher Fortschritte eine vollständige Übersicht der litoralen Ökosysteme noch nicht vorhanden und insbesondere das Verständnis ihrer Stoffhaushalte noch lückenhaft ist.
settings
Hydrogeologische Karte von Niedersachsen 1 : 50 000 – Mittlere jährliche Grundwasserneubildung für den 30-jährigen Zeitraum 2071-2100 im hydrologischen Sommerhalbjahr, Kein-Klimaschutz-Szenario (RCP8.5) (WMS Dienst)
Die Karte zeigt die modellierte mittlere jährliche Grundwasserneubildung für den 30-jährigen Zeitraum 2071-2100 im hydrologischen Sommerhalbjahr (Mai-Okt.) in mm/a berechnet mit dem „Kein-Klimaschutz“-Szenario (RCP8.5). Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche Klimaprojektionsdaten genutzt. Die Klimaprojektionsdaten stellen die Ergebnisse eines Ensembles aus verschiedenen Klimamodellen dar (das Niedersächsische Klimaensemble AR5-NI v2.1 siehe Hajati et al. (2022)). Die Daten wurden vom Deutschen Wetterdienst bereitgestellt. Datengrundlage dessen ist das EURO-CORDEX Ensemble (Jacob et al., 2014). Im Rahmen des BMVI-Expertennetzwerks fand durch den DWD eine Herunterskalierung von einem 12,5 km auf ein 5 km Raster statt. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden. Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 500 x 500 m Raster für mGROWA22 herunterskaliert.
Als Subrosion wird die unterirdische Auslaugung und Verfrachtung von meist leichtlöslichem Gestein bezeichnet. Subrodierbar sind chemische Sedimente, wie die leichtlöslichen Chloride Steinsalz und Kalisalz, Sulfatgesteine wie Gips und Anhydrit (Sulfatkarst) und auch die schwerer löslichen Karbonatgesteine z.B. Kalkstein (Karbonatkarst). Die meisten Schäden in Niedersachsen sind auf die Auslaugung von Sulfatgesteinen zurückzuführen. Bei der Subrosion ist zwischen regulärer und irregulärer Auslaugung zu unterscheiden. Eine reguläre Auslaugung findet flächenhaft an der Oberfläche des subrodierbaren Gesteins statt und führt zu weitspannigen, meist geringen Senkungen des Geländes. Eine irreguläre Auslaugung konzentriert sich auf einen kleinräumigen, eng begrenzten Bereich und kann zur Entstehung von Höhlen, Schlotten oder Gerinnen führen. Sie schreitet im Festgestein vor allem entlang von Klüften oder Fugen im Gestein voran. Daher sind aufgelockerte Gebirgsbereiche in tektonischen Störungszonen auch meist Bereiche intensiver Subrosion. Wird die Grenztragfähigkeit des über einem Hohlraum liegenden Gebirges überschritten, kann dieser Hohlraum verstürzen und bis zur Erdoberfläche durchbrechen (Erdfall). Die Schichtmächtigkeit des löslichen Gesteines und damit die mögliche Größe eines Hohlraumes sind maßgeblich für die Größe des Einbruchs an der Geländeoberfläche. Etwa 50 Prozent der Erdfälle haben in Niedersachsen einen Durchmesser bis zwei Meter und bei ungefähr 40 Prozent liegt der Durchmesser zwischen zwei und fünf Metern. Obwohl diese Durchmesser recht klein erscheinen, können die Auswirkungen auf Bauwerke sehr groß sein. In der Karte ISH50 wurde auf Basis des Geotektonischen Atlas von Nordwestdeutschland 1:100.000 Salzstockhochlagen gekennzeichnet, in denen Salzgesteine oberhalb von -200 m NN – in wenigen Ausnahme oberhalb von -300 m NN – auftreten und von Grundwasser führenden Schichten umgeben sind. Hier können durch Auslaugung im Bereich des Salzspiegels flächenhafte Senkungen und durch Auslaugung im Bereich des Gipshutes Erdfälle entstehen. Die in der Karte dargestellten Informationen ersetzen keine Baugrunduntersuchung gemäß DIN EN 1997-2 (DIN 4020).
folder_code
Zusammenfassende Darstellung der Ergebnisse der geochemischen Untersuchungen in Deutschland im Zeitraum 1975 - 1986, Elementgehalte in Bachwässern und Bachsedimenten, Einzelelementkarten
In den Jahren 1975 – 1986 wurden durch die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) auf dem damaligen Staatsgebiet der Bundesrepublik Deutschland sowie durch das Zentrale Geologische Institut (ZGI) der damaligen DDR im Bereich der an der Erdoberfläche anstehenden bzw. gering von Känozoikum überdeckten präoberpermischen Grundgebirgseinheiten im Südteil der ehemaligen DDR ca. 98.000 Wasser- und 87.500 Sedimentproben aus Bächen und Flüssen entnommen und geochemisch untersucht. Die Ergebnisse dieser Untersuchungen wurden u.a. im „Geochemischen Atlas Bundesrepublik Deutschland“ (Fauth et al., 1985) und im „Abschlussbericht zur vergleichenden Bewertung der Rohstofführung in den Grundgebirgseinheiten der DDR“ (Röllig et al., 1990) dokumentiert. Bei den im Rahmen dieser Untersuchungen erhobenen geochemischen Daten handelt es um in ihrer hohen Probenahmedichte einzigartige flächendeckende geochemische Aufnahmen eines Großteils des Gebietes der heutigen Bundesrepublik Deutschland. Alle späteren geochemischen Untersuchungen (Geochemischer Atlas 2000 sowie im Rahmen von GEMAS und FOREGS) wurden mit einer ungleich geringeren Probenahmedichte durchgeführt. Diese wertvollen und unwiederbringlichen Daten sind seit ihrer digitalen Aufbereitung und Bereitstellung in den Jahren 2022 (Geochemischen Atlas Bundesrepublik Deutschland) und 2023 (Geochemische Prospektion in den Grundgebirgseinheiten im Südteil der ehemaligen DDR) über das Geoportal der BGR allgemein verfügbar. Eine direkte Vergleichbarkeit der für die beiden Teilgebiete bereitgestellten Karten ist jedoch aufgrund der Unterschiede in den bei den Untersuchungen eingesetzten Analysenverfahren (untersuchtes Elementspektrum, Analysenqualität, Bestimmungsgrenzen, …) nicht gegeben. Für einen Teil der untersuchten Elemente und Parameter ist jedoch bei entsprechenden Anpassungen (Bestimmungsgrenzen, darstellbare Gehaltsbereiche, Klasseneinteilung der Kartenlegenden, …) eine zusammenfassende Darstellung der Ergebnisse dieser in ihrer hohen Belegungsdichte einzigartigen geochemischen Untersuchungen möglich. Solche zusammenfassenden Darstellungen werden nun über das Geoportal der BGR erstmals bereitgestellt. Die Downloads zeigen die Verteilung der gemessenen Elementgehalte und Parameter für jedes Element bzw. jeden Parameter in jeweils vier verschiedenen farbigen Punkt- und Isoflächenkarten.
settings
Explorationsrelevante Sandsteine der Bückeberg-Gruppe in Niedersachsen 1 : 500 000 (WMS Dienst)
Die Übersichtskarte zeigt die Verbreitung der Bückeberg-Gruppe (Unterkreide, Ober-Berriasium) im Niedersächsischen Becken und stellt insbesondere explorationsrelevante Sandsteine und deren Eigenschaften dar. Als explorationsrelevant werden hier regional zusammenhängende Sandsteine mit einer Mächtigkeit von mindestens fünf Metern bezeichnet. Für diese Einheiten kann ein Potenzial als geothermisch nutzbare Aquifere vermutet werden, das jedoch standortbezogen im Einzelfall nachzuweisen ist. Die hier verwendete Untergliederung in die „obere“, „mittlere“ und “untere“ Bückeberg-Gruppe für die kartierten Einheiten ist informell und als relativ anzusehen. Explorationsrelevante Sandsteine des Berriasium sind vorwiegend im östlichen Teil des Niedersächsischen Beckens zu finden (Kopf-Sandstein der Fuhse-Formation, Sandsteine der Barsinghausen-Subformation und Sandsteine der Deister- und Fuhse-Formation) sowie vereinzelt im Raum Osnabrück (Sandsteine der Oesede-Formation). Die Sandsteine sind in der Regel in eine Wechselfolge aus Tonstein, Siltstein und lokal geringmächtigen Kohlelagen eingebettet. Tonsteine, Siltsteine, Tonmergelsteine, Schillkalksteine und lokal geringmächtige Sandsteine der Isterberg-Formation werden zusammengefasst dargestellt. Porosität, Permeabilität und Transmissibilität der Lithologien wurden bei der Kartierung nicht berücksichtigt, sind jedoch – soweit verfügbar – als bohrungsbezogene Parameter angegeben. Die Abgrenzung der kartierten Einheiten beruht auf vorhandener Literatur und der Bewertung und Interpretation ausgewählter geowissenschaftlicher Daten, die am Landesamt für Bergbau, Energie und Geologie (LBEG) vorliegen. Grundlage bildet der Paläogeographische Atlas der Unterkreide von Nordwestdeutschland (Schott; 1969), in dem die Verbreitung sowie die Lithologie der Unterkreide im Niedersächsischen Becken dargestellt sind sowie der Geotektonische Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor (Baldschuhn et al. 2001) und die Geologische Karte von Niedersachsen 1: 50 000 (GK50). Die von Schott (1969) kartierte Verbreitungsgrenze des "Wealden" (entspricht weitgehend der Bückeberg-Gruppe) sowie die durch die Beckeninversion erodierten Bereiche wurden in die vorliegende Karte übernommen und stellenweise nach neueren Informationen modifiziert. Die dargestellten Salzstrukturen stammen aus der Karte der Salzstrukturen Norddeutschlands 1: 500 000 (BGR 2008). Innerhalb der Verbreitungsgrenze der Bückeberg-Gruppe wurden basierend auf den Informationen der Kohlenwasserstoff-Bohrungsdatenbank des LBEG Tiefbohrungen mit geeigneter Datenlage für die Kartierung ausgewählt. Die Abgrenzung der kartierten Einheiten beruht auf der Bewertung und Interpretation der stratigraphischen und lithologischen Informationen aus Schichtenverzeichnissen, geophysikalischen Bohrlochmessungen und Bohrkernmaterial. Großräumige Verzahnungs- bzw. Übergangsbereiche zwischen zwei Kartiereinheiten werden als schräg schraffierte Flächen dargestellt. Die Überlagerung von zwei Sandsteineinheiten ist als vertikal schraffierte Fläche abgebildet. Gebiete, in denen keine, oder nur unzureichende Informationen aus Tiefbohrungen vorliegen oder ausgewertet wurden, sind in der Verbreitungskarte als „Gebiete mit unzureichender Kenntnis der Lithologie oder nicht kartiert“ ausgewiesen. Die Bereiche der Salzstockflanken und Salzstock-Randsenken wurden nicht näher untersucht. Lokale Änderungen der Mächtigkeit, Lithofazies und Gesteinseigenschaften in diesen Bereichen bleiben daher unberücksichtigt. Die verwendeten Bohrungen sind als Belegpunkte aufgeführt. Die ausgewerteten Daten der Tiefbohrungen werden als Werteklassen angezeigt. Die Tiefenlage und die Gesamtmächtigkeit basiert auf der Auswertung der Schichtenverzeichnisse. Angaben zur Mächtigkeit der Sandsteine stammen aus der Auswertung von Bohrlochmessungen sowie aus den Schichtverzeichnissen und beziehen sich auf die jeweils mächtigste Sandsteinlage einer ausgewerteten Bohrung. Porosität und Permeabilität der Sandsteine wurden aus den Informationen der Kohlenwasserstoff-Datenbank aus Bohrkerndaten und, falls vorhanden, aus Bohrlochmessungen berechnet. Die Angaben der Porositäten aus Bohrkerndaten sind als effektive Porositäten (%) und aus Bohrlochmessungen als Gesamtporosität (%) zu verstehen. Die Werteklassen der Permeabilität sind jeweils in Millidarcy (mD) und in Quadratmeter (m²) angegeben. In den Karten sind die unterschiedlichen Datengrundlagen durch Symbole gekennzeichnet. Die Transmissibilität der Sandsteine ergibt sich aus deren Mächtigkeit und der jeweiligen Permeabilität und ist entsprechend der Berechnungsgrundlage in unterschiedlichen Symbolen in den Einheiten Darcymeter (Dm) und Kubikmeter (m³) dargestellt.