Logo Logo
  • Start
  • Suche
  • Karte
  • Dashboard
  • Über
  • |
  • Kontakt
  • Start
  • Suche
  • Karte
  • Dashboard
  • Über
  • Kontakt
  • Impressum
  • Datenschutz
  • Barrierefreiheit
Was suchst Du?
Umweltinformationen werden gesucht. Bitte warten...
Filter filter_list Filter einstellen

Begrenze die Suche räumlich

search
92.776 Ergebnisse
92.776 Ergebnisse
Anzeigen:
Filter
Ergebnistypen
settings Wasserversorgungskonzept Niedersachsen 1 : 500 000 - Veränderung des Nutzungsdrucks für den Betrachtungszeitpunkt 2050 (zu IST-Zustand) bei trockenen Verhältnissen für Landkreise (WMS Dienst)
Das Wasserversorgungskonzept Niedersachsen dient dem übergeordneten Ziel der langfristigen Sicherstellung der niedersächsischen Wasserversorgung, insbesondere der öffentlichen Wasserversorgung als ein maßgeblicher Baustein der Daseinsvorsorge. Die Wasserversorgung muss entsprechend der aktuellen und regionalen Herausforderungen und unter der Maßgabe einer nachhaltigen Grundwasserbewirtschaftung weiterentwickelt werden. Hierzu ist es sowohl für Politik und Wasserbehörden als auch für die Nutzer der Ressource notwendig, Handlungsbedarfe frühzeitig erkennen zu können, um im Weiteren rechtzeitig notwendige Maßnahmen für eine langfristige Sicherstellung der niedersächsischen Wasserversorgung zu ergreifen. Das Wasserversorgungskonzept Niedersachsen stellt einen hierfür erforderlichen landesweiten Informationsrahmen dar. Als Fachkonzeption dient es Wassernutzern, Zulassungsbehörden und dem Land für die Wasserbewirtschaftung und der Öffentlichkeit als transparente und in die Zukunft gerichtete Informations- und Planungsgrundlage. Vorgaben für Einzelverfahren sind ausdrücklich nicht das Ziel. Im Rahmen des Wasserversorgungskonzeptes erfolgt eine Bilanzierung des derzeitigen Standes (Bezugsjahr 2015) sowie der mittel- und langfristigen Entwicklungen der niedersächsischen Wasserversorgung. Hierbei werden das Grundwasserdargebot für mittlere und trockene Verhältnisse und die Wasserbedarfe der maßgeblichen Grundwassernutzer einander zu verschiedenen Zeitpunkten (2015, 2030, 2050 und 2100) gegenübergestellt. Die Methodik des Wasserversorgungskonzeptes Niedersachsen wurde rasterbasiert durchgeführt. Dafür wurde ein 500 x 500 m Raster erstellt, welches sich über ganz Niedersachsen und Bremen erstreckt. Landesweite Datengrundlagen, die der Planung der aktuellen und zukünftigen Bewirtschaftung des Grundwassers dienen, wurden auf das Raster übertragen. Diese bildeten die Grundlage der durchgeführten Berechnungen, Bewertungen und abschließenden Darstellungen. In der Karte ist für den Betrachtungszeitpunkt 2050 die Veränderung des Nutzungsdrucks gegenüber dem IST-Zustand bei trockenen Verhältnissen für Landkreise dargestellt.
Zuletzt aktualisiert: 27.05.2025
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
settings Schutzwürdige Böden in Niedersachsen 1 : 50 000 - Böden mit hoher natürlicher Bodenfruchtbarkeit (WFS Dienst)
Zu den besonders schutzwürdigen Böden zählen Böden, welche die natürlichen Funktionen sowie die Archivfunktion in besonderem Maße erfüllen. Beeinträchtigungen dieser Funktionen sollen nach Bodenschutzrecht vermieden werden (vgl. §1 BBodSchG). Ein wesentlicher Faktor zur Beurteilung der Lebensraumfunktion eines Bodens ist seine natürliche Fruchtbarkeit. Sie kennzeichnet das Potential des Bodens zur Produktion von Biomasse. Besonders schützenswert werden hierfür Böden erachtet, die mit einer sehr hohen natürlichen Bodenfruchtbarkeit ausgestattet sind. Sie ermöglichen eine Landbewirtschaftung mit geringem Betriebsmitteleinsatz. Diese trägt wiederum zur nachhaltigen Sicherung der Leistungsfähigkeit des Naturhaushaltes bei. Die ausgewiesenen besonders schutzwürdigen Böden auf Basis der BK50 stellen maßstabsbedingt Suchräume dar. Diese können bei Bedarf im Rahmen von großmaßstäbigen Kartierungen detaillierter ausdifferenziert werden. Die Methoden zur Ermittlung der Schutzwürdigkeit von Böden in Niedersachsen sind ausführlich in Geoberichte 8 (Bug et al. 2019) beschrieben. Grundlage der Auswertungen ist die Bodenkarte von Niedersachsen 1 : 50 000 (BK50). Es handelt sich um Böden mit einer im landesweiten Vergleich hohen bis äußerst hohen Bodenfruchtbarkeit (Stufen 5-7). Um den unterschiedlichen Landschaften Niedersachsens gerecht zu werden, ist die Auswertung nach Bodenregionen differenziert (vgl. Geoberichte 8). Die Auswertung erfolgt mittels der NIBIS®-Auswertungsmethode „Bodenfruchtbarkeit“ (vgl. Geoberichte 19). Sie ermittelt die Bodenfruchtbarkeit auf Basis des Bodenwasserhaushalts und der Nährstoffversorgung eines Standorts. Die Bewertung wird für Acker-, Grünland und Waldböden über den unterschiedlichen effektiven Wurzelraum der Vegetation differenziert vorgenommen. Böden mit einer regional hohen Fruchtbarkeit, die aber im landesweiten Vergleich nur eine mittlere Fruchtbarkeit aufweisen, können mit dieser Herangehensweise nur bedingt erfasst werden. Für regionale oder kommunale Betrachtungen bietet der Geoberichte 26 eine angepasste Methodik.
Zuletzt aktualisiert: 27.05.2025
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
public Deltaentwicklung Deutsche Nordsee – Tiefenlage spätkänozoischer Sedimente
Die Karten zeigen die rezenten Tiefenlagen der Mittelmiozän Diskordanz in Metern unter NN sowie die Tops der seismischen Einheiten SU1 bis SU7 in Metern unter NN. Bei letzteren handelt es sich um sieben kartierte Einheiten, die oberhalb der Mittelmiozän Diskordanz anhand von seismischen und bohrlochgeophysikalischen Daten identifiziert wurden. In der Veröffentlichung „Late Cenozoic evolution of the German North Sea – Sedimentation in a subsiding basin“ (Thöle et al., 2014) sind diese Inhalte beschrieben und dokumentiert. Die Sedimentation in der südlichen Nordsee wurde vom Mittelmiozän an bis ins Pleistozän hinein durch ein sich aus Osten nach Westen vorrückendes Deltasystem dominiert, dem sogenannten Eridanos Delta (sensu Overeem et al., 2001). Die Ausmaße dieses fossilen Deltas sind mit denen der größten heutigen Deltasysteme der Erde vergleichbar (Schwarz, 1996). Die Entwicklung dieses Ablagerungssystems war in den letzten Jahrzehnten bereits Gegenstand zahlreicher wissenschaftlicher Studien (e.g. Sörensen et al., 1997; Overeem et al., 2001; Kuhlmann, 2004), die sich jedoch vorwiegend auf die benachbarten Nordsee-Sektoren konzentrierten und nur verhältnismäßig wenig war über den deutschen Teil bekannt. Für das Gesamtverständnis der in diesem Zeitabschnitt vorherrschenden Deltasedimentation und deren Entwicklung ist der deutsche Teil aber unerlässlich, da sich vom Obermiozän bis ins späte Pliozän hinein, der Hauptablagerungsraum des riesigen Deltas vorwiegend im heutigen deutschen Nordsee-Sektor befand. Auf der Basis umfangreicher seismischer Daten und geophysikalischer Bohrlochinformationen ist erstmalig eine detaillierte Auskartierung der spätkänozoischen Deltaablagerungen im deutschen Nordsee-Sektor erfolgt. Die Gliederung der bisher nur grob bzw. gar nicht unterteilten sedimentären Abfolge erfolgte nach seismostratigraphischen und sequenzstratigraphischen Konzepten (e.g. Mitchum et al., 1977; Catuneanu, 2006). Danach wurden sieben regional bedeutsame seismische Horizonte oberhalb der Mittelmiozän Diskordanz identifiziert und mit Hilfe neuer biostratigraphischer Datierungen zeitlich kalibriert. Sie unterteilen die spätkänozoische Sedimentabfolge in sieben Hauptablagerungseinheiten, namentlich SU1 bis SU7. Die jeweils an ihrer Basis und an ihrem Top von prominenten Diskordanzflächen begrenzten Einheiten spiegeln aufeinanderfolgende Phasen der Deltaentwicklung wider. Literatur: Thöle, H., Gaedicke, C., Kuhlmann, G., and Reinhardt, L. (2014). Late Cenozoic sedimentary evolution of the German North Sea – A seismic stratigraphic approach: Newsletters on Stratigraphy, 47, (3), 299-329. Mitchum, R.M.J., Vail, P.R., Sangree, J.B. (1977). Seismic stratigraphy and global changes of sea-level, part 6: stratigraphic interpretation of seismic reflection patterns in depositional sequences. In: Payton, C. (Ed.), Seismic Stratigraphy Applications to Hydrocarbon Exploration. American Association of Petroleum Geologist Memoir, vol. 26. AAPG, Tulsa, pp. 117-133. Schwarz, C. (1996). Die Bohrungen 89/3, 89/4 und 89/9 auf dem deutschen Nordseeschelf - Sedimentologische und magnetostratigraphische Befunde sowie lithostratigraphische Konnektierung. In: Streif, H. (Editor), Deutsche Beiträge zur Quartärforschung in der südlichen Nordsee. Geologisches Jahrbuch, 146/Reihe A. Schweizerbart: 33-137. Sørensen, J. C., Gregersen U., Breiner M. und Michelsen O. (1997). High-frequency sequence stratigraphy of Upper Cenozoic deposits in the central and southeastern North Sea areas, Marine and Petroleum Geology, 14 (2), 99-123. Overeem, I., G. J. Weltje, C. Bishop-Kay, and S. B. Kroonenberg (2001). The Late Cenozoic Eridanos delta system in the Southern North Sea Basin: a climate signal in sediment supply?, Basin Research, 13 (3), 293-312. Kuhlmann, G. (2004). High resolution stratigraphy and paleoenvironmental changes in the southern North Sea during the Neogene. An integrated study of Late Cenozoic marine deposits from the northern part of the Dutch offshore area, cummulative thesis, 209 pp, Utrecht University, Utrecht. Catuneanu, O., 2006. Principles of Sequence Stratigraphy: New York, Elsevier, 386 p.
Zuletzt aktualisiert: 05.03.2024
folder_code Datenkataloge
/ Geodatensatz
arrow_right_alt
settings Bor-Hintergrundwerte im Grundwasser von Niedersachsen 1 : 500.000 (WMS Dienst)
Zur Erfüllung der Aufgaben aus der EG-Wasserrahmenrichtlinie (EG-WRRL) sowie der Grundwasserverordnung (GrwV) wurden für die hydrogeologischen Teilräume Niedersachsens (Elbracht et al., 2016) Hintergrundwerte für gelöstes Bor im Grundwasser ermittelt. Die Hintergrundwerte von gelöstem Bor umfassen die Gehalte, welche sich unter natürlichen Bedingungen durch den Kontakt des Grundwassers mit der umgebenden Gesteinsmatrix des Grundwasserleiters einstellen. Die Karte zeigt farblich differenziert die Bor-Hintergrundwerte der hydrogeologischen Teilräume Niedersachsens. Die Klassifizierung orientiert sich an den gültigen Geringfügigkeitsschwellenwerten (GFS) der Länderarbeitsgemeinschaft Wasser (LAWA), den Grenzwerten der Trinkwasserverordnung (TrinkwV) und den Richtwerten der Weltgesundheitsorganisation (WHO). Durch das Auswählen eines Teilraumes gelangt man zu weiterführenden Informationen (z.B. Probenanzahl, zusammengefasste Teilräume, etc.). Hintergrundwerte sind keine aktuellen Messwerte zur Grundwassergüte und können nicht als solche genutzt werden! Quellen: ELBRACHT, J., MEYER, R. & REUTTER, E. (2016): Hydrogeologische Räume und Teilräume in Niedersachsen. – GeoBerichte 3, LBEG, Hannover. DOI: 10.48476/geober_3_2016 WAGNER, B., WALTER, T., HIMMELSBACH, T., CLOS, P., BEER, A., BUDZIAK, D., DREHER, T., FRITSCHE, H.-G., HÜBSCHMANN, M., MARCZINEK, S., PETERS, A., POESER, H., SCHUSTER, H., STEINEL, A., WAGNER, F. & WIRSING, G. (2011): Hydrogeochemische Hintergrundwerte der Grundwässer Deutschlands als Web Map Service. – Grundwasser 16(3): 155-162; Springer, Berlin / Heidelberg.
Zuletzt aktualisiert: 10.12.2024
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
public GEMAS – Geochemische Kartierung der Acker- und Grünlandböden Europas, Zusatzinformationen, Jahresniederschlag
GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soil in Europe) ist ein Kooperationsprojekt zwischen der Expertengruppe „Geochemie“ der europäischen geologischen Dienste (EuroGeoSurveys) und Eurometeaux (Verbund der europäischen Metallindustrie). Insgesamt waren an der Durchführung des Projektes weltweit über 60 internationale Organisationen und Institutionen beteiligt. In den Jahren 2008 und 2009 wurden in 33 europäischen Ländern auf einer Fläche von 5 600 000 km² insgesamt 2219 Ackerproben (Ackerlandböden, 0 – 20 cm, Ap-Proben) und 2127 Grünlandproben (Weidelandböden, 0 – 10 cm, Gr-Proben) entnommen. In den Proben wurden 52 Elemente im Königswasseraufschluss, von 41 Elementen die Gesamtgehalte sowie TC und TOC bestimmt. In den Ap-Proben wurden zusätzlich 57 Elemente in der mobilen Metallionenfraktion (MMI®) sowie die Bleiisotopenverhältnisse untersucht. Neben den chemischen Elementgehalten wurden in den Proben auch Bodeneigenschaften und -parameter wie der pH-Wert, die Korngrößenverteilung, die effektive Kationenaustauschkapazität (CEC), MIR-Spektren und die magnetische Suszeptibilität untersucht sowie einige Koeffizienten berechnet. Alle analytischen Untersuchungen unterlagen einer strengen externen Qualitätssicherung. Damit liegt erstmals ein qualitätsgesicherter und harmonisierter geochemischer Datensatz für die europäischen Landwirtschaftsböden mit einer Belegungsdichte von einer Probe pro 2 500 km² vor, der eine Darstellung der Elementgehalte und deren Bioverfügbarkeit im kontinentalen (europäischen) Maßstab ermöglicht. Die in den Datenserien „GEMAS – Einzelelementkarten“ und „GEMAS – Parameter und Indizes“ bereitgestellten geochemischen Karten zeigen eine neutrale und wertungsfreie Darstellung der Verteilungsmuster der untersuchten Elemente und Parameter. Mit der Datenserie „GEMAS – Zusatzinformationen“ werden zusätzliche Informationen bereitgestellt, die die Interpretation dieser geochemischen Karten unterstützen sollen. Der zu dieser Datenserie gehörende Datensatz „Jahresniederschlag“ stellt Karten zur Jahresniederschlag im Untersuchungsgebiet in den Jahren 1960-1990 und 1970-2000 bereit (Datenquellen: UCDAVIS, worldclim.org).
Zuletzt aktualisiert: 10.03.2025
folder_code Datenkataloge
/ Geodatensatz
arrow_right_alt
settings Stickstoff-Flächenbilanzsaldo aus der Landwirtschaft auf Gemeindeebene (2019) (WMS Dienst)
Stickstoffbilanzen (N-Bilanzen) sind ein wichtiges Instrument, um die Stickstoffemissionen (Stickstoffüberschüsse) aus der Landwirtschaft zu quantifizieren. Zur Berechnung des N-Flächenbilanzsaldos wird der N-Zufuhr (auf die landwirtschaftlich genutzte Fläche) die N-Abfuhr gegenübergestellt: N-Zufuhr – N-Abfuhr = N-Saldo Im Rahmen des landesweiten Basis-Emissionsmonitorings wird ein N-Flächenbilanz-Modell verwendet, welches am Johann Heinrich von Thünen-Institut entwickelt und an die regionalen Bedingungen in Niedersachsen angepasst wurde. Das Ergebnis sind auf Basis der Agrarstatistik berechnete Stickstoff-Flächenbilanzen auf Gemeindeebene, die mit jedem Erscheinen der Landwirtschaftszählung bzw. Agrarstrukturerhebung neu berechnet werden können (alle 3 bis 4 Jahre). Der berechnete N-Flächenbilanzsaldo wird in [kg N/ha*a] bezogen auf die landwirtschaftlich genutzte Fläche (ohne Stilllegungsflächen) ausgegeben. Die dargestellten N-Flächenbilanzsalden2016 sind eine wichtige Grundlage zur Berechnung der potenziellen Nitratkonzentration im Sickerwasser. Die potenzielle Nitratkonzentration dient der Abschätzung der Sickerwassergüte an der Untergrenze des Wurzelraumes. Zu beachten ist, dass die in die N-Flächenbilanzsalden eingeflossenen Daten der Agrarstatistik zu Tierzahlen und Flächennutzung nach dem Betriebssitzprinzip erhoben wurden und somit räumliche Verschiebungen möglich sind. Detaillierte Methodenbeschreibung siehe: Methodik_Basis_Emissionsmonitoring_LBEG.pdf
Zuletzt aktualisiert: 27.05.2025
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
public Kohlenstoffreiche Böden in Niedersachsen 1: 50 000 mit versiegelten Flächen - Bodentypbeschreibung
Die Bodentypenkarte stellt die Böden mit kohlenstoffreichen Horizonten (Moorböden und Böden mit Torfhorizonten) dar und weist über 30 Bodentypen aus. Bei einigen Einheiten werden die kohlenstoffreichen Horizonte nicht im Bodentyp genannt, obwohl sie bestimmend für den Bodentyp sind. In diesen Fällen kommen die kohlenstoffreichen Horizonte i. d. R. erst in tieferen Profilabschnitten vor. Insgesamt werden in der Karte etwa 150 Bodenformen (Bodentyp plus Substrat mit unterschiedlichen Mächtigkeiten = Legendeneinheiten) ausgewiesen. Die Bodenkarte BK50 beschreibt die Verbreitung der Böden von Niedersachsen in einem Maßstab von 1 : 50.000 nach neustem Stand der beim LBEG vorliegenden Bodeninformationen. Die Bodenkarte weist für ihren Maßstab eine relativ hohe räumliche Differenzierung der Bodentypen auf und berücksichtigt die zum Zeitpunkt der Erstellung aktuellsten Kenntnisse über die Verbreitung der Moore unter Einbeziehung der Vererdungsstufen und Moorfolgeböden sowie von Kulturböden wie z. B. Tiefumbrüchen, Plaggeneschen, Spittkulturböden, Marschhufenböden. Moorböden sind besonders dynamisch und verändern sich schnell durch kulturtechnische Maßnahmen. Durch Entwässerung entsteht ein aerober Bereich im Torfkörper, der Prozesse wie Sackung, Torfschrumpfung und -zersetzung in Gang bringt und zu einem Verlust an Torfmächtigkeit (Vererdungsprozesse im Moor) führt. Die vorliegende Karte kann diese Änderungen nur zeitlich verzögert abbilden. Es wird darauf hingewiesen, dass es sich bei der Karte um eine Übersichtsdarstellung handelt. Sie kann dazu dienen, sich einen Überblick über die kohlenstoffreichen Böden Niedersachsens zu verschaffen oder auch Suchräume auszuweisen. Dagegen kann sie keine Grundlage für flächenscharfe, regionale Aussagen sein.
Zuletzt aktualisiert: 10.12.2024
folder_code Datenkataloge
/ Geodatensatz
INSPIRE Open Data
arrow_right_alt
settings Hydrogeologische Karte von Niedersachsen 1 : 50 000 – Mittlere jährliche Grundwasserneubildung des hydrologischen Sommerhalbjahres für den 30-jährigen Zeitraum 1961-1990 (WMS Dienst)
Die Karte zeigt die mittlere jährliche Grundwasserneubildung des hydrologischen Sommerhalbjahres für den 30-jährigen Zeitraum 1961-1990. Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (HERRMANN et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche gemessene und anschließend räumlich interpolierte Klimabeobachtungsdaten des Deutschen Wetterdienstes genutzt. Diese sind die potenzielle Verdunstung, die auf Grundlage der FAO-Grasreferenzverdunstung berechnet wurde (DWD, unveröffentlicht) und der Niederschlag basierend auf dem REGNIE-Produkt (Rauthe et al, 2013), welche nach Richter korrigiert wurden (Richter, 1995). Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 100 x 100 m Raster für mGROWA22 herunterskaliert.
Zuletzt aktualisiert: 27.05.2025
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
settings Wärmeleitfähigkeiten für Erdwärmesondenanlagen (Sonden-Bezugstiefe 60 m) (WFS Dienst)
Die vorliegenden Karten mit Punktdaten zu „Wärmeleitfähigkeiten für Erdwärmesondenanlagen“ bis 30 kW Leistung und Sondenlängen von 40 m, 60 m, 80 m oder 100 m wurden anhand der verfügbaren Bohrinformationen in der Bohrdatenbank Niedersachsen erarbeitet. Die dargestellten Werte sind abgeschätzten Wärmeleitfähigkeiten basierend auf Werten aus der VDI 4640, eigenen Messwerten und Werten des bundeseinheitlichen Produktkataloges zur wirtschaftlichen Anwendung oberflächennaher geothermischer Daten (Hrsg. Ad-Hoc AG Hydrogeologie, 2008). Auf der Karte sind durchschnittliche Wärmeleitfähigkeiten für ausgewählte Bohrungen dargestellt. Beim Anklicken einer Bohrung öffnet sich eine Info-Box mit den wichtigsten Stammdaten der Bohrung. Wärmeleitfähigkeiten einzelner Schichteinheiten können abgerufen werden, indem der Link "weitere Informationen" angeklickt wird. Für den geplanten Standort einer neuen Erdwärmesonde können die dargestellten Werte in der näheren Umgebung – vorausgesetzt der Untergrundaufbau ist vergleichbar – eine Orientierung darüber geben, mit welcher durchschnittlichen Wärmeleitfähigkeit bei einer Sondenlänge von 40 m, 60 m, 80 m oder 100 m zu rechnen ist. Die Daten dienen einer ersten Einschätzung möglicher Wärmeleitfähigkeiten und ersetzen nicht die konkrete Überprüfung im Rahmen des Anlagenbaus anhand der örtlich angetroffenen Verhältnisse. Weitere Informationen zu rechtlichen und technischen Grundlagen sind im „Leitfaden Erdwärmenutzung in Niedersachsen“ (GeoBerichte 24) zu finden.
Zuletzt aktualisiert: 27.05.2025
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
public Bodenuntersuchungsprogramm Erdgasförderplätze - Sanierung abgeschlossen
Das LBEG führte vom Juli 2015 bis Mai 2017 eine systematische Kampagne zur Untersuchung von Bodenbelastungen im Umfeld von Erdgasförderplätzen durch. Insgesamt wurden 200 der 455 aktiven Erdgasförderplätze in Niedersachsen beprobt und auf mögliche Belastungen durch Schwermetalle, unterschiedliche Kohlenwasserstoffe, Dioxine und Furane untersucht. Außerdem wurde an ausgewählten Plätzen die spezifische Radioaktivität gemessen. Das Programm berücksichtigte alle Landkreise, in denen sich Erdgasförderplätze befinden. Neben dem Landkreis Rotenburg/Wümme waren das Standorte in den Landkreisen Aurich, Celle, Cloppenburg, Diepholz, Emsland, Grafschaft Bentheim, Heidekreis, Leer, Nienburg, Oldenburg, Vechta und Verden sowie in der Stadt Emden und der Region Hannover. Die Förderplätze wurden so ausgewählt, dass in jedem Landkreis ein ungefähr gleicher Anteil der insgesamt vorhandenen Förderplätze untersucht wurde (ca. 40%). Alle Untersuchungen erfolgten nach den rechtlichen Vorgaben der Bundes-Bodenschutzverordnung. Die Ergebnisse stellte das LBEG am 15. Mai 2017 im Rahmen einer Pressekonferenz vor. Der Endbericht liegt zum Download vor. Auf Basis der erarbeiteten Ergebnisse wurde u. a. vorgeschlagen, an allen Erdgasförderplätzen, die in Oberflächengewässer entwässern (insbesondere den Plätzen, die im Rahmen des o. g. Projektes (AG Hg I) nicht untersucht wurden), weitere Sedimentuntersuchungen durchzuführen. Die Sedimentuntersuchungen sind erforderlich, weil im Rahmen der durchgeführten Untersuchungen (AG Hg I) auffallend häufig Überschreitungen der Schwellenwerte (OW) in Sedimenten entwässerungsrelevanter Oberflächengewässer festgestellt wurden. Im Zuge der weiterführenden Sedimentuntersuchungen wurden im Sommer 2018 im Umfeld von insgesamt 42 Erdgasförderplätzen weitere orientierende Untersuchungen durchgeführt. Die Probenahme wurde an den Einleitstellen sowie im An- und Abstrom der Einleitstellen bzw. der Erdgasförderplätze sowohl in trockenen Gräben als auch in Oberflächengewässern durchgeführt. Die Ergebnisse wurden im November 2018 vorgelegt und im Endbericht zu den weiterführenden Sedimentuntersuchungen zusammengefasst (http://www.lbeg.niedersachsen.de/startseite/boden_grundwasser/schadstoffmessungen/untersuchungen_im_umfeld_von_erdgasfoerderplaetzen/untersuchungen-im-umfeld-von-erdgasfoerderplaetzen-135742.html).
Zuletzt aktualisiert: 10.12.2024
folder_code Datenkataloge
/ Geodatensatz
Open Data
arrow_right_alt
671 - 680 von 92.776 Ergebnissen
first_page arrow_left_alt 64 65 66 67
68
69 70 71 72 arrow_right_alt last_page

Räumliche Begrenzung der Suche festlegen

Umweltinformationsportal des Landes Niedersachsen
Logo
©
Niedersächsisches Ministerium für
Umwelt, Energie und Klimaschutz
Über Kontakt Impressum Datenschutz Barrierefreiheit
MVP