Logo Logo
  • Start
  • Suche
  • Karte
  • Dashboard
  • Über
  • |
  • Kontakt
  • Start
  • Suche
  • Karte
  • Dashboard
  • Über
  • Kontakt
  • Impressum
  • Datenschutz
  • Barrierefreiheit
Was suchst Du?
Umweltinformationen werden gesucht. Bitte warten...
Filter filter_list Filter einstellen

Begrenze die Suche räumlich

search
22.116 Ergebnisse
22.116 Ergebnisse
Anzeigen:
public Verteilung mineralischer Rohstoffe in der deutsche Nordsee – potenzielle Spülsandvorkommen im Niedersächsischen Küstenraum Tiefenentnahme Bohrdatenauswertung bis 20m GOK
Die Karte Verteilung mineralischer Rohstoffe in der deutsche Nordsee – potenzielle Spülsandvorkommen im Niedersächsischen Küstenraum stellt Informationen zur Verbreitung von Sedimenten dar, die als geeignet zur Gewinnung für Küstenschutzzwecke klassifiziert wurden. Hintergrund für die Ausweisung der vorrangig mittelsandigen Vorkommen ist der kontinuierlich hohe Bedarf dieses mineralischen Rohstoffs, der sich durch die langfristig zunehmende Belastung der Ostfriesischen Inseln im Zuge des säkularen Meeresspiegelanstiegs und potenziellen Auswirkungen des Klimawandels ergibt. Die Karten umfassen den Bereich nördlich der Ostfriesischen Inseln, der durch die -8 m NN Isobathe im Süden und das Verkehrstrennungsgebiet im Norden begrenzt wird. Die Aussagetiefe variiert zwischen den Auswertungen zu einer möglichen Flächenentnahme bis 3 m Teufe unter GOK und der Option zur Tiefenentnahme bis 20 m unter GOK. Entsprechend der Fragestellung wurden Bohrdaten in den Teufenintervallen 0-3 m, 0-10 m und 0-20 m ausgewertet. Die Legende umfasst 2 Klassen und kennzeichnet in den genannten Teufenbereichen potenzielle Vorkommen von Sand (allgemein) und präzisiert falls auswertbar, das gesuchte Korngrößenspektrum von Fein- bis Mittelsand. Ergänzend ist für die Meeresbodenoberfläche der Median der Korngrößenverteilung von flächenhaft (Raster) entnommenen Proben in 3 Klassen von 150-300 µm dargestellt. Grundlage der Kartendarstellungen sind Sedimentproben von der Meeresbodenoberfläche bis zu einer Teufe von 20 cm sowie Schichtbeschreibungen von Bohrungen, die bis Juni 2011 im Niedersächsischen Küstenraum zur Verfügung standen. Die Grundlagendaten sind in Datenbanken beim BSH und LBEG abgelegt, zukünftig erhobene Daten werden darin integriert. Lockersedimente werden entsprechend ihrer Korngrößen nach DIN EN 14688-1 eingeteilt: Ton (Korngröße <0,002 mm); Schluff (Korngröße 0,002 bis 0,063 mm); Sand (Korngröße 0,063 bis 2,0 mm); Kies (Korngröße 2,0 bis 63 mm); Steine und Blöcke (>63 mm). Auf Basis der im Labor durchgeführten Korngrößenanalysen sowie den Schichtbeschreibungen aus Bohrungen werden die Sedimente für entsprechende Fragestellungen klassifiziert.
Zuletzt aktualisiert: 10.12.2024
folder_code Datenkataloge
/ Geodatensatz
Open Data
arrow_right_alt
public Bericht: "Makrozoobenthos: Unterweser; Bremerhaven bis Bremen (1980)"
Summary: In 1980 a survey of the intertidal bottom fauna was carried out in the upper reaches and the limnic tidal area of the Weser estuary between Bremerhaven and Bremen. The upper reaches are part of the natural estuarine brackish water zone. The limnic tidal area can no longer be regarded as a true fresh water habitat, because in recent years the entire course of the Weser has received a brackish character by wastes from potassium mining. From the 38 benthic animal species found, 16 species are oligochaetes, which also in quantitative respect are the most important group. A faunal break near Rodenkirchen, where the average chloride concentration is about 1 to 1,5 ‰, divides the area in a lower and an upper section. In the lower section the brackish water oligochaetes Tubifex costatus, Paranais litoralis and Peloscolex heterochaetus are the dominat species. The upper section (which includes the formerly limnic, but now briny area) is dominated by the limnic oligochaetes Limnodrilus hoffmeisteri and Tubifex tubifex, furthermore Paranais litoralis, Tubifex costatus and larvae oft the dipterous Ceratopogonidae are common and abundant. In the intertidal banks the following habitats can be distinguished: Reed beds; Mud flats; Mixed bottom; Sandy flats; Hard bottoms; Concerning the productivity of the investigation area the following conclusions may be drawn: In the upper reaches and the limnic tidal area of the Weser reed beds and mud flats are the only habitats where a considerable production of the benthic fauna takes places. The large sandy banks of the main river bed represent a habitat which is extremely poor or even uncolonized. Diskussion und Zusammenfassung: Im Jahre 1980 erfolgte eine Bestandsaufnahme der Bodenfauna in den Wattensäumen der Unterweser. Von der insgesamt 50 km langen Flußstrecke gehört ein unterer Teil (Bremerhaven – Brake) zum natürlichen Brackwasser, ein oberer, ebenfalls noch den Gezeiten unterworfener Teil (Brake – Bremen) war früher limnisch, ist gegenwärtig jedoch durch Abwässer der Kali-Industrie in ein schwaches Brackwasser verwnadlet. Von den 38 im Gebiet gefundenen Tierarten der Bodenfauna bilden die Oligochaeten mit 16 Arten die stärkste und auch in quantitativer Hinsicht bedeutendste Gruppe. Die Verbreitung der Tierarten lässt eine Häufung von Vorkommensgrenzen und Abundanzsprüngen bei Rodenkirchen, mittlerer Chloridgehalt 1 bis 1,5 ‰ erkennen. An dieser Stelle wurde die Unterweser in einen unteren und einen oberen Abschnitt gegliedert. Im unteren Abschnitt (natürliches Brackwasser mit seewärts steigender Konzentration) sind die Brackwasseroligochaeten Tubifex costatus, Paranais litoralis und Peloscolex heterochaetus die dominierenden Tierarten. Im oberen Abschnitt (teils schwach konzentriertes, natürliches Brackwasser, überwiegend ehemals limnisches, jetzt künstlich versalzenes Gebiet) herrschen die limnischen Oligochaeten Limnodrilus hoffmeisteri und Tubifex tubifex vor und Paranais litoralis, Tubifex costatus sowie Larven der Dipterenfamilie Ceratopogonidae sind weitere stetige und häufige Bodentiere. Die Ufer beider Abschnitte weisen folgende eulitorale Lebensräume auf: Riedbestände; Schlickböden; Mischböden; Sandböden; Sekundäre Hartböden; Aus produktionsbiologischer Sicht ist aus den Ergebnissen zu folgern: Riedbestände und Schlickwatten der Unterweser sind die einzigen Stätten, in denen eine nennenswerte Produktion der Bodenfauna stattfindet, da die Sandböden der Ufer des Hauptstromes schwach oder gar nicht besiedelt sind.
Zuletzt aktualisiert: 20.02.2014
folder_code Datenkataloge
/ Geodatensatz
arrow_right_alt
public Bericht: "Makrozoobenthos: Unterweser; Bremerhaven bis Bremen (1980)"
Summary: In 1980 a survey of the intertidal bottom fauna was carried out in the upper reaches and the limnic tidal area of the Weser estuary between Bremerhaven and Bremen. The upper reaches are part of the natural estuarine brackish water zone. The limnic tidal area can no longer be regarded as a true fresh water habitat, because in recent years the entire course of the Weser has received a brackish character by wastes from potassium mining. From the 38 benthic animal species found, 16 species are oligochaetes, which also in quantitative respect are the most important group. A faunal break near Rodenkirchen, where the average chloride concentration is about 1 to 1,5 ‰, divides the area in a lower and an upper section. In the lower section the brackish water oligochaetes Tubifex costatus, Paranais litoralis and Peloscolex heterochaetus are the dominat species. The upper section (which includes the formerly limnic, but now briny area) is dominated by the limnic oligochaetes Limnodrilus hoffmeisteri and Tubifex tubifex, furthermore Paranais litoralis, Tubifex costatus and larvae oft the dipterous Ceratopogonidae are common and abundant. In the intertidal banks the following habitats can be distinguished: Reed beds; Mud flats; Mixed bottom; Sandy flats; Hard bottoms; Concerning the productivity of the investigation area the following conclusions may be drawn: In the upper reaches and the limnic tidal area of the Weser reed beds and mud flats are the only habitats where a considerable production of the benthic fauna takes places. The large sandy banks of the main river bed represent a habitat which is extremely poor or even uncolonized. Diskussion und Zusammenfassung: Im Jahre 1980 erfolgte eine Bestandsaufnahme der Bodenfauna in den Wattensäumen der Unterweser. Von der insgesamt 50 km langen Flußstrecke gehört ein unterer Teil (Bremerhaven – Brake) zum natürlichen Brackwasser, ein oberer, ebenfalls noch den Gezeiten unterworfener Teil (Brake – Bremen) war früher limnisch, ist gegenwärtig jedoch durch Abwässer der Kali-Industrie in ein schwaches Brackwasser verwnadlet. Von den 38 im Gebiet gefundenen Tierarten der Bodenfauna bilden die Oligochaeten mit 16 Arten die stärkste und auch in quantitativer Hinsicht bedeutendste Gruppe. Die Verbreitung der Tierarten lässt eine Häufung von Vorkommensgrenzen und Abundanzsprüngen bei Rodenkirchen, mittlerer Chloridgehalt 1 bis 1,5 ‰ erkennen. An dieser Stelle wurde die Unterweser in einen unteren und einen oberen Abschnitt gegliedert. Im unteren Abschnitt (natürliches Brackwasser mit seewärts steigender Konzentration) sind die Brackwasseroligochaeten Tubifex costatus, Paranais litoralis und Peloscolex heterochaetus die dominierenden Tierarten. Im oberen Abschnitt (teils schwach konzentriertes, natürliches Brackwasser, überwiegend ehemals limnisches, jetzt künstlich versalzenes Gebiet) herrschen die limnischen Oligochaeten Limnodrilus hoffmeisteri und Tubifex tubifex vor und Paranais litoralis, Tubifex costatus sowie Larven der Dipterenfamilie Ceratopogonidae sind weitere stetige und häufige Bodentiere. Die Ufer beider Abschnitte weisen folgende eulitorale Lebensräume auf: Riedbestände; Schlickböden; Mischböden; Sandböden; Sekundäre Hartböden; Aus produktionsbiologischer Sicht ist aus den Ergebnissen zu folgern: Riedbestände und Schlickwatten der Unterweser sind die einzigen Stätten, in denen eine nennenswerte Produktion der Bodenfauna stattfindet, da die Sandböden der Ufer des Hauptstromes schwach oder gar nicht besiedelt sind.
Zuletzt aktualisiert: 20.02.2014
folder_code Datenkataloge
/ Geodatensatz
arrow_right_alt
public 3D Modell des tieferen Untergrundes des Norddeutschen Beckens
Das „TUNB 3D-Modell des Norddeutschen Beckens“ liefert abfragebasiert Informationen zur räumlichen Verteilung von Basisflächen, Salzstrukturen und Störungen im Norddeutschen Becken (Festland und Offshore Deutsche Nordsee). Das Modell beinhaltet 13 „litho“-stratigraphische Basisflächen von spät-paläozoischen bis känozoischen Formationen. Dabei bildet die Basisfläche des permischen Zechstein die Basis des Modells und die känozoische „Basis Rupelium“ die jüngste ausmodellierte stratigraphische Basisfläche. Zur Oberfläche hin schließt das Modell mit der Fläche der Geländeoberkante ab. Im Bereich der Deutschen Nordsee entspricht dies dem Meeresboden. 273 Salzstrukturen wurden unter Zuhilfenahme seismischer Daten und Bohrungen, sowie teilweise aus den kartierten Verbreitungsgrenzen einzelner Horizonte modelliert. Im Modell werden diese Strukturen durch ihre Umhüllende dargestellt. Aufgrund ihrer hohen Anzahl konnten nicht alle bekannten Störungen innerhalb des Modellgebietes in das Modell aufgenommen werden. Störungen wurden generell ab einer Länge von 5 km und einem Versatz von mindestens 3 Horizonten modelliert. Einzelne wichtige Störungen wurden zusätzlich modelliert, auch wenn sie den oben genannten Kriterien nicht entsprachen. Aufgrund seiner Auflösung und notwendiger Generalisierungen eignet sich das Modell nicht für detaillierte Standortuntersuchungen. Das 3D-Modell ist das Produkt eines von der BGR koordinierten Verbundprojektes, erstellt zwischen 2014 bis 2020. In diesem Projekt modellierten die Staatlichen Geologischen Dienste der Bundesländer Schleswig-Holstein (LLUR), Mecklenburg-Vorpommern (LUNG), Brandenburg (LBGR), Sachsen-Anhalt (LAGB) und Niedersachen (LBEG) ihre jeweiligen Landesgebiete. Das Landesgebiet von Hamburg wurde durch das LLUR, das von Bremen durch das LBEG und das von Berlin durch Geologischen Dienst von Brandenburg (LBGR) mit modelliert. Für die Modellierung der Deutschen Nordsee war die BGR zuständig. Die Urheberschaft der Landesmodelle liegt somit auch bei den Staatlichen Geologischen Diensten, die diese jeweils erstellt haben. Als Modellierungssoftware kam das Programmpaket Paradigm SKUA-GOCAD zum Einsatz. Wir danken EMERSON E&P für die Bereitstellung von Paradigm SKUA-GOCAD und EPOS im Rahmen des Academic Software Programmes. Das Modell wird passend für diese Software zum Download angeboten.
Zuletzt aktualisiert: 07.04.2025
folder_code Datenkataloge
/ Geodatensatz
arrow_right_alt
public Geologische Übersichtskarte von Niedersachsen 1 : 500 000
Die Geologische Übersichtskarte 1 : 500 000 gibt einen landesweiten Überblick vom geologischen Aufbau Niedersachsens. Als Linieninformation werden zusätzlich Angaben zur Ausdehnung verschiedener Vereisungen, zur Küstenlinie der Nordsee im Quartär sowie zu tektonischen Strukturen gegeben. Das südniedersächsische Bergland wird von den Festgesteinen des Paläozoikum und Mesozoikum aufgebaut. Im Harz und bei Osnabrück steht das paläozoische Grundgebirge zutage an. Ältestes Gestein ist der vermutlich aus dem Präkambrium stammende Eckergneis. Über einer Schichtlücke folgen die Sedimente eines paläozoischen Meeresbeckens. Darin kamen im Silur schwarze Tonschiefer, im Devon Sandstein, Dachschiefer, Schwellen- und Riffkalke zum Absatz; im Oberdevon und Unterkarbon wurden die Harzer Grauwacken geschüttet. Basaltische Laven, die heutigen Diabase, traten am Meeresboden aus. Damit in Zusammenhang entstanden Kieselschiefer und Eisenerze. Die gesamte Schichtenfolge wurde bei der varistischen Gebirgsbildung im Oberkarbon aufgefaltet; abschließend stiegen magmatische Schmelzen auf, die heute im Harzburger Gabbro, im Brocken- und Oker-Granit freigelegt sind. Im Rotliegenden sammelte sich der Abtragungsschutt in Senken des Gebirges. Das Zechstein-Meer überflutete ein bereits eingeebnetes Gelände und überdeckte es mit mächtigen Folgen von Kalk, Gips bzw. Anhydrit und Salz. Im Mesozoikum wurde das flache, zeitweise trockenfallende Becken mit den Sedimenten der Trias (Buntsandstein, Muschelkalk und Keuper) aufgefüllt, im Jura und in der Kreidezeit wurde das Becken wieder vom Meer überflutet. Der mesozoische Schichtenstapel zerbrach in einer Zeit tektonischer Unruhe (Oberjura bis Kreide) an tiefreichenden Störungen. An ihnen stieg das plastisch reagierende Zechsteinsalz auf. Das Ergebnis ist die saxonische Bruchfaltung des Deckgebirges. Im Tertiär überflutete das Meer erneut das eingeebnete Gelände und lagerte Sand und Ton ab, während sich im Binnenland zeitweise Braunkohle bildete. Schließlich zog sich das Meer auf den heutigen Nordsee-Bereich zurück. Das Quartär ist durch einen mehrfachen Wechsel von Kalt- und Warmzeiten gekennzeichnet. Im mittleren Pleistozän waren zur Elster- und Saale-Kaltzeit große Teile Niedersachsens vergletschert; das Eis hinterließ Grundmoränen (Geschiebemergel) und Schmelzwasserablagerungen (Kies, Sand und Ton). In den Warmzeiten (Interglazialen) und in der Nacheiszeit (Holozän) entstanden Torfe, Mudden und Mergel. Teile des Küstengebietes wurden dabei überflutet und von Meeres-, Watt- und Brackwasserablagerungen überdeckt.
Zuletzt aktualisiert: 10.12.2024
folder_code Datenkataloge
/ Geodatensatz
Open Data
arrow_right_alt
settings Geologische Übersichtskarte von Niedersachsen 1 : 500 000 (WMS Dienst)
Die Geologische Übersichtskarte 1 : 500 000 gibt einen landesweiten Überblick vom geologischen Aufbau Niedersachsens. Als Linieninformation werden zusätzlich Angaben zur Ausdehnung verschiedener Vereisungen, zur Küstenlinie der Nordsee im Quartär sowie zu tektonischen Strukturen gegeben. Das südniedersächsische Bergland wird von den Festgesteinen des Paläozoikum und Mesozoikum aufgebaut. Im Harz und bei Osnabrück steht das paläozoische Grundgebirge zutage an. Ältestes Gestein ist der vermutlich aus dem Präkambrium stammende Eckergneis. Über einer Schichtlücke folgen die Sedimente eines paläozoischen Meeresbeckens. Darin kamen im Silur schwarze Tonschiefer, im Devon Sandstein, Dachschiefer, Schwellen- und Riffkalke zum Absatz; im Oberdevon und Unterkarbon wurden die Harzer Grauwacken geschüttet. Basaltische Laven, die heutigen Diabase, traten am Meeresboden aus. Damit in Zusammenhang entstanden Kieselschiefer und Eisenerze. Die gesamte Schichtenfolge wurde bei der varistischen Gebirgsbildung im Oberkarbon aufgefaltet; abschließend stiegen magmatische Schmelzen auf, die heute im Harzburger Gabbro, im Brocken- und Oker-Granit freigelegt sind. Im Rotliegenden sammelte sich der Abtragungsschutt in Senken des Gebirges. Das Zechstein-Meer überflutete ein bereits eingeebnetes Gelände und überdeckte es mit mächtigen Folgen von Kalk, Gips bzw. Anhydrit und Salz. Im Mesozoikum wurde das flache, zeitweise trockenfallende Becken mit den Sedimenten der Trias (Buntsandstein, Muschelkalk und Keuper) aufgefüllt, im Jura und in der Kreidezeit wurde das Becken wieder vom Meer überflutet. Der mesozoische Schichtenstapel zerbrach in einer Zeit tektonischer Unruhe (Oberjura bis Kreide) an tiefreichenden Störungen. An ihnen stieg das plastisch reagierende Zechsteinsalz auf. Das Ergebnis ist die saxonische Bruchfaltung des Deckgebirges. Im Tertiär überflutete das Meer erneut das eingeebnete Gelände und lagerte Sand und Ton ab, während sich im Binnenland zeitweise Braunkohle bildete. Schließlich zog sich das Meer auf den heutigen Nordsee-Bereich zurück. Das Quartär ist durch einen mehrfachen Wechsel von Kalt- und Warmzeiten gekennzeichnet. Im mittleren Pleistozän waren zur Elster- und Saale-Kaltzeit große Teile Niedersachsens vergletschert; das Eis hinterließ Grundmoränen (Geschiebemergel) und Schmelzwasserablagerungen (Kies, Sand und Ton). In den Warmzeiten (Interglazialen) und in der Nacheiszeit (Holozän) entstanden Torfe, Mudden und Mergel. Teile des Küstengebietes wurden dabei überflutet und von Meeres-, Watt- und Brackwasserablagerungen überdeckt.
Zuletzt aktualisiert: 10.12.2024
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
public Geologische Übersichtskarte von Niedersachsen 1 : 500 000
Die Geologische Übersichtskarte 1 : 500 000 gibt einen landesweiten Überblick vom geologischen Aufbau Niedersachsens. Als Linieninformation werden zusätzlich Angaben zur Ausdehnung verschiedener Vereisungen, zur Küstenlinie der Nordsee im Quartär sowie zu tektonischen Strukturen gegeben. Das südniedersächsische Bergland wird von den Festgesteinen des Paläozoikum und Mesozoikum aufgebaut. Im Harz und bei Osnabrück steht das paläozoische Grundgebirge zutage an. Ältestes Gestein ist der vermutlich aus dem Präkambrium stammende Eckergneis. Über einer Schichtlücke folgen die Sedimente eines paläozoischen Meeresbeckens. Darin kamen im Silur schwarze Tonschiefer, im Devon Sandstein, Dachschiefer, Schwellen- und Riffkalke zum Absatz; im Oberdevon und Unterkarbon wurden die Harzer Grauwacken geschüttet. Basaltische Laven, die heutigen Diabase, traten am Meeresboden aus. Damit in Zusammenhang entstanden Kieselschiefer und Eisenerze. Die gesamte Schichtenfolge wurde bei der varistischen Gebirgsbildung im Oberkarbon aufgefaltet; abschließend stiegen magmatische Schmelzen auf, die heute im Harzburger Gabbro, im Brocken- und Oker-Granit freigelegt sind. Im Rotliegenden sammelte sich der Abtragungsschutt in Senken des Gebirges. Das Zechstein-Meer überflutete ein bereits eingeebnetes Gelände und überdeckte es mit mächtigen Folgen von Kalk, Gips bzw. Anhydrit und Salz. Im Mesozoikum wurde das flache, zeitweise trockenfallende Becken mit den Sedimenten der Trias (Buntsandstein, Muschelkalk und Keuper) aufgefüllt, im Jura und in der Kreidezeit wurde das Becken wieder vom Meer überflutet. Der mesozoische Schichtenstapel zerbrach in einer Zeit tektonischer Unruhe (Oberjura bis Kreide) an tiefreichenden Störungen. An ihnen stieg das plastisch reagierende Zechsteinsalz auf. Das Ergebnis ist die saxonische Bruchfaltung des Deckgebirges. Im Tertiär überflutete das Meer erneut das eingeebnete Gelände und lagerte Sand und Ton ab, während sich im Binnenland zeitweise Braunkohle bildete. Schließlich zog sich das Meer auf den heutigen Nordsee-Bereich zurück. Das Quartär ist durch einen mehrfachen Wechsel von Kalt- und Warmzeiten gekennzeichnet. Im mittleren Pleistozän waren zur Elster- und Saale-Kaltzeit große Teile Niedersachsens vergletschert; das Eis hinterließ Grundmoränen (Geschiebemergel) und Schmelzwasserablagerungen (Kies, Sand und Ton). In den Warmzeiten (Interglazialen) und in der Nacheiszeit (Holozän) entstanden Torfe, Mudden und Mergel. Teile des Küstengebietes wurden dabei überflutet und von Meeres-, Watt- und Brackwasserablagerungen überdeckt.
Zuletzt aktualisiert: 27.05.2025
folder_code Datenkataloge
/ Geodatensatz
Open Data
arrow_right_alt
settings Geologische Übersichtskarte von Niedersachsen 1 : 500 000 (WMS Dienst)
Die Geologische Übersichtskarte 1 : 500 000 gibt einen landesweiten Überblick vom geologischen Aufbau Niedersachsens. Als Linieninformation werden zusätzlich Angaben zur Ausdehnung verschiedener Vereisungen, zur Küstenlinie der Nordsee im Quartär sowie zu tektonischen Strukturen gegeben. Das südniedersächsische Bergland wird von den Festgesteinen des Paläozoikum und Mesozoikum aufgebaut. Im Harz und bei Osnabrück steht das paläozoische Grundgebirge zutage an. Ältestes Gestein ist der vermutlich aus dem Präkambrium stammende Eckergneis. Über einer Schichtlücke folgen die Sedimente eines paläozoischen Meeresbeckens. Darin kamen im Silur schwarze Tonschiefer, im Devon Sandstein, Dachschiefer, Schwellen- und Riffkalke zum Absatz; im Oberdevon und Unterkarbon wurden die Harzer Grauwacken geschüttet. Basaltische Laven, die heutigen Diabase, traten am Meeresboden aus. Damit in Zusammenhang entstanden Kieselschiefer und Eisenerze. Die gesamte Schichtenfolge wurde bei der varistischen Gebirgsbildung im Oberkarbon aufgefaltet; abschließend stiegen magmatische Schmelzen auf, die heute im Harzburger Gabbro, im Brocken- und Oker-Granit freigelegt sind. Im Rotliegenden sammelte sich der Abtragungsschutt in Senken des Gebirges. Das Zechstein-Meer überflutete ein bereits eingeebnetes Gelände und überdeckte es mit mächtigen Folgen von Kalk, Gips bzw. Anhydrit und Salz. Im Mesozoikum wurde das flache, zeitweise trockenfallende Becken mit den Sedimenten der Trias (Buntsandstein, Muschelkalk und Keuper) aufgefüllt, im Jura und in der Kreidezeit wurde das Becken wieder vom Meer überflutet. Der mesozoische Schichtenstapel zerbrach in einer Zeit tektonischer Unruhe (Oberjura bis Kreide) an tiefreichenden Störungen. An ihnen stieg das plastisch reagierende Zechsteinsalz auf. Das Ergebnis ist die saxonische Bruchfaltung des Deckgebirges. Im Tertiär überflutete das Meer erneut das eingeebnete Gelände und lagerte Sand und Ton ab, während sich im Binnenland zeitweise Braunkohle bildete. Schließlich zog sich das Meer auf den heutigen Nordsee-Bereich zurück. Das Quartär ist durch einen mehrfachen Wechsel von Kalt- und Warmzeiten gekennzeichnet. Im mittleren Pleistozän waren zur Elster- und Saale-Kaltzeit große Teile Niedersachsens vergletschert; das Eis hinterließ Grundmoränen (Geschiebemergel) und Schmelzwasserablagerungen (Kies, Sand und Ton). In den Warmzeiten (Interglazialen) und in der Nacheiszeit (Holozän) entstanden Torfe, Mudden und Mergel. Teile des Küstengebietes wurden dabei überflutet und von Meeres-, Watt- und Brackwasserablagerungen überdeckt.
Zuletzt aktualisiert: 27.05.2025
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
settings Geologische Übersichtskarte von Niedersachsen 1 : 500 000 (WFS Dienst)
Die Geologische Übersichtskarte 1 : 500 000 gibt einen landesweiten Überblick vom geologischen Aufbau Niedersachsens. Als Linieninformation werden zusätzlich Angaben zur Ausdehnung verschiedener Vereisungen, zur Küstenlinie der Nordsee im Quartär sowie zu tektonischen Strukturen gegeben. Das südniedersächsische Bergland wird von den Festgesteinen des Paläozoikum und Mesozoikum aufgebaut. Im Harz und bei Osnabrück steht das paläozoische Grundgebirge zutage an. Ältestes Gestein ist der vermutlich aus dem Präkambrium stammende Eckergneis. Über einer Schichtlücke folgen die Sedimente eines paläozoischen Meeresbeckens. Darin kamen im Silur schwarze Tonschiefer, im Devon Sandstein, Dachschiefer, Schwellen- und Riffkalke zum Absatz; im Oberdevon und Unterkarbon wurden die Harzer Grauwacken geschüttet. Basaltische Laven, die heutigen Diabase, traten am Meeresboden aus. Damit in Zusammenhang entstanden Kieselschiefer und Eisenerze. Die gesamte Schichtenfolge wurde bei der varistischen Gebirgsbildung im Oberkarbon aufgefaltet; abschließend stiegen magmatische Schmelzen auf, die heute im Harzburger Gabbro, im Brocken- und Oker-Granit freigelegt sind. Im Rotliegenden sammelte sich der Abtragungsschutt in Senken des Gebirges. Das Zechstein-Meer überflutete ein bereits eingeebnetes Gelände und überdeckte es mit mächtigen Folgen von Kalk, Gips bzw. Anhydrit und Salz. Im Mesozoikum wurde das flache, zeitweise trockenfallende Becken mit den Sedimenten der Trias (Buntsandstein, Muschelkalk und Keuper) aufgefüllt, im Jura und in der Kreidezeit wurde das Becken wieder vom Meer überflutet. Der mesozoische Schichtenstapel zerbrach in einer Zeit tektonischer Unruhe (Oberjura bis Kreide) an tiefreichenden Störungen. An ihnen stieg das plastisch reagierende Zechsteinsalz auf. Das Ergebnis ist die saxonische Bruchfaltung des Deckgebirges. Im Tertiär überflutete das Meer erneut das eingeebnete Gelände und lagerte Sand und Ton ab, während sich im Binnenland zeitweise Braunkohle bildete. Schließlich zog sich das Meer auf den heutigen Nordsee-Bereich zurück. Das Quartär ist durch einen mehrfachen Wechsel von Kalt- und Warmzeiten gekennzeichnet. Im mittleren Pleistozän waren zur Elster- und Saale-Kaltzeit große Teile Niedersachsens vergletschert; das Eis hinterließ Grundmoränen (Geschiebemergel) und Schmelzwasserablagerungen (Kies, Sand und Ton). In den Warmzeiten (Interglazialen) und in der Nacheiszeit (Holozän) entstanden Torfe, Mudden und Mergel. Teile des Küstengebietes wurden dabei überflutet und von Meeres-, Watt- und Brackwasserablagerungen überdeckt.
Zuletzt aktualisiert: 27.05.2025
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
public Bericht: "Sublitoral: Erfassung schutzwürdiger Lebensräume mit Sonartechniken (1999)"
„Der vorliegende Bericht stellt die Ergebnisse des von der Niedersächsischen Wattenmeerstiftung geförderten Forschungsprojektes „Untersuchungen zur Erfassung schutzwürdiger Lebensräume im Sublitoral der niedersächsischen Küste unter Zuhilfenahme von Sonartechniken“ vor. Aufgabe dieses Projektes war es, Sonartechniken auf ihre Nutzbarkeit zur Erkennung und Unterscheidung verschiedener Sedimenttypen und benthischer Lebensgemeinschaften zu prüfen. Vom Einsatz dieser Sonartechniken wird erwartet, dass sie die Aussagekraft sublitoraler Flächenuntersuchungen im Rinnensystem des Wattenmeeres oder im Küstenvorfeld, die zu Management- oder Naturschutzzwecken durchgeführt werden, verbessert sowie deren Durchführung weniger aufwendig macht. Der Schwerpunkt der Untersuchungen lag auf der Arbeit mit einem neuen Ansatz, der akustischen Meeresbodenklassifikation. Zum Vergleich wurde – in Kooperation mit dem Senckenberg-Institut in Wilhelmshaven – mit dem Seitensicht-Sonar ein bereits seit längerem genutztes Gerät eingesetzt. […] Diese Methoden sollen in effektiver Weise Informationen über das Sublitoral liefern und helfen, den zeit- und kostenaufwendigen Einsatz konventioneller Untersuchungsmethoden zu reduzieren bzw. die Qualität und Aussagekraft gegenüber bisherigen Untersuchungsansätzen zu verbessern. Hierbei wurden zunächst mehrere besonders schutzwürdige Organismengemeinschaften (Miesmuschelbank, Sabellaria-Riff, Seegraswiese) und verbreitete Sedimenttypen in Küstenbereich hinsichtlich ihrer Erfassbarkeit und Klassifizierung durch die Sonarmethoden untersucht. […]“ Summary „The investigations described in this report targeted at he examination and adaptation of sonar methods for their application in the gullies of the Wadden Sea and the offshore areas of Lower Saxony. Applied in an effective way, these methods should provide information about the Sublitoral area helping to reduce the time and cost demanding employment of conventional investigation methods. First of all, several benthic communities with high importance for nature conservation (mussel beds, Sabellaria reefs, seagrass meadows) as well as common sediment types of the coastal area were examined with respect to their detection and classification with the sonar methods. […]”
Zuletzt aktualisiert: 20.02.2014
folder_code Datenkataloge
/ Geodatensatz
arrow_right_alt
3821 - 3830 von 22.116 Ergebnissen
first_page arrow_left_alt 379 380 381 382
383
384 385 386 387 arrow_right_alt last_page

Räumliche Begrenzung der Suche festlegen

Umweltinformationsportal des Landes Niedersachsen
Logo
©
Niedersächsisches Ministerium für
Umwelt, Energie und Klimaschutz
Über Kontakt Impressum Datenschutz Barrierefreiheit
MVP