Logo Logo
  • Start
  • Suche
  • Karte
  • Messwerte
  • Dashboard
  • Über
  • |
  • Kontakt
  • Start
  • Suche
  • Karte
  • Messwerte
  • Dashboard
  • Über
  • Kontakt
  • Impressum
  • Datenschutz
  • Barrierefreiheit
Was suchst Du?
Umweltinformationen werden gesucht. Bitte warten...
Filter filter_list Filter einstellen

Begrenze die Suche räumlich

search
6.182 Ergebnisse
6.182 Ergebnisse
Anzeigen:
settings Niedersächsischer Bodenfeuchteinformationsdienst - Tagesaktueller Wassergehalt der Böden in Niedersachsen in % der nutzbaren Feldkapazität (%nFK) (WFS Dienst)
Der Niedersächsische Bodenfeuchteinformationsdienst (NIBOFID) des LBEG zeigt den tagesaktuellen Wassergehalt für alle Böden in Niedersachsen. Darüber hinaus lässt sich der Verlauf des Bodenwassergehalts für die letzten 10 Tage abrufen. Die Bodenfeuchte wird in % der nutzbaren Feldkapazität (%nFK) angegeben. Die nFK beschreibt die Wassermenge, die ein Boden maximal pflanzenverfügbar speichern kann. Die Werte des Bodenfeuchtemonitors sind berechnet und nicht gemessen. Die Berechnung erfolgt mit dem Bodenwasserhaushaltsmodell BOWAB und wird täglich mit Klimakennwerten (Niederschlag, Temperatur, Wind, Globalstrahlung und relative Luftfeuchte) des Vortages durchgeführt. Es werden für die jeweilige Landnutzung (Acker, Grünland, Laubwald, Nadelwald, Sonstiges) und den Boden spezifisch Parametern abgeleitet. BOWAB nutzt die hochaufgelösten Bodendaten der Bodenkarte 1:50.000 (BK50) von Niedersachsen und leitetet bodenwasserhaushaltliche Kennwerte, wie nFK, FK etc. ab. Die Berechnung erfolgt für die Flächen der BK50. Der Einfluss des Grundwassers wird in Form von kapillarem Aufstieg und durch den Grundwasserstand aus der BK50 berücksichtigt. Eine Bodenfeuchte von 100 %nFK zeigt an, dass der Bodenwasserspeicher gefüllt ist. Bei Werten oberhalb von 100 % entsteht Sickerwasser oder es steht Grundwasser innerhalb der betrachteten Bodenschicht. Werte kleiner als 100 %nFK zeigen an, dass die Pflanzen Bodenwasser entnommen haben und der Boden allmählich austrocknet. Ab Bodenfeuchtewerten unterhalb von 40 - 50 %nFK reagieren Pflanzen auf die Trockenheit und verringern ihre Verdunstung. Bei Werten von < 30 % nFK kann von Trockenstress ausgegangen werden. Im Kartenbild ist die Bodenfeuchte für den Boden von 0 – 60 cm Tiefe dargestellt, der dem Hauptwurzelraum bei den meisten Böden und Nutzungsformen entspricht. Standortbezogene Informationen liefert ein Maptip. Durch das Klicken auf einen Standort wird der aktuelle Bodenwassergehalt für den Hauptwurzelraum in %nFK angezeigt. Zusätzlich können auf der Detailseite weiterführende Informationen abgerufen werden. Als Grafik wird der Verlauf der mittleren Bodenfeuchte für die vergangenen 10 Tage für die Tiefenbereiche 0 - 30 cm (Oberboden), 0 - 60 cm (Hauptwurzelraum) und, sofern der Boden mächtiger ist, 0 - 90 cm (gesamte Betrachtungstiefe) dargestellt. Zudem wird die Sickerwassermenge unterhalb von 90 cm Tiefe für den betrachteten Standort angegeben. Falls Sie noch genauere Informationen zum Wassergehalt für Ihren Boden mit einer bestimmten Anbaukultur (Weizen, Mais, Grünland) benötigen, nutzen Sie gerne die Fachanwendung „Bodenwasserhaushalt“ im NIBIS® Kartenserver. Sie bietet die Möglichkeit den Verlauf der Bodenfeuchte für einzelne oder mehrere Flächen über einen längeren Zeitraum mit verschiedenen Fruchtfolgen (z.B. 1 Jahr oder länger) zu ermitteln.
Zuletzt aktualisiert: 27.05.2025
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
public Niedersächsischer Bodenfeuchteinformationsdienst - Tagesaktueller Wassergehalt der Böden in Niedersachsen in % der nutzbaren Feldkapazität (%nFK)
Der Niedersächsische Bodenfeuchteinformationsdienst (NIBOFID) des LBEG zeigt den tagesaktuellen Wassergehalt für alle Böden in Niedersachsen. Darüber hinaus lässt sich der Verlauf des Bodenwassergehalts für die letzten 10 Tage abrufen. Die Bodenfeuchte wird in % der nutzbaren Feldkapazität (%nFK) angegeben. Die nFK beschreibt die Wassermenge, die ein Boden maximal pflanzenverfügbar speichern kann. Die Werte des Bodenfeuchtemonitors sind berechnet und nicht gemessen. Die Berechnung erfolgt mit dem Bodenwasserhaushaltsmodell BOWAB und wird täglich mit Klimakennwerten (Niederschlag, Temperatur, Wind, Globalstrahlung und relative Luftfeuchte) des Vortages durchgeführt. Es werden für die jeweilige Landnutzung (Acker, Grünland, Laubwald, Nadelwald, Sonstiges) und den Boden spezifisch Parametern abgeleitet. BOWAB nutzt die hochaufgelösten Bodendaten der Bodenkarte 1:50.000 (BK50) von Niedersachsen und leitetet bodenwasserhaushaltliche Kennwerte, wie nFK, FK etc. ab. Die Berechnung erfolgt für die Flächen der BK50. Der Einfluss des Grundwassers wird in Form von kapillarem Aufstieg und durch den Grundwasserstand aus der BK50 berücksichtigt. Eine Bodenfeuchte von 100 %nFK zeigt an, dass der Bodenwasserspeicher gefüllt ist. Bei Werten oberhalb von 100 % entsteht Sickerwasser oder es steht Grundwasser innerhalb der betrachteten Bodenschicht. Werte kleiner als 100 %nFK zeigen an, dass die Pflanzen Bodenwasser entnommen haben und der Boden allmählich austrocknet. Ab Bodenfeuchtewerten unterhalb von 40 - 50 %nFK reagieren Pflanzen auf die Trockenheit und verringern ihre Verdunstung. Bei Werten von < 30 % nFK kann von Trockenstress ausgegangen werden. Im Kartenbild ist die Bodenfeuchte für den Boden von 0 – 60 cm Tiefe dargestellt, der dem Hauptwurzelraum bei den meisten Böden und Nutzungsformen entspricht. Standortbezogene Informationen liefert ein Maptip. Durch das Klicken auf einen Standort wird der aktuelle Bodenwassergehalt für den Hauptwurzelraum in %nFK angezeigt. Zusätzlich können auf der Detailseite weiterführende Informationen abgerufen werden. Als Grafik wird der Verlauf der mittleren Bodenfeuchte für die vergangenen 10 Tage für die Tiefenbereiche 0 - 30 cm (Oberboden), 0 - 60 cm (Hauptwurzelraum) und, sofern der Boden mächtiger ist, 0 - 90 cm (gesamte Betrachtungstiefe) dargestellt. Zudem wird die Sickerwassermenge unterhalb von 90 cm Tiefe für den betrachteten Standort angegeben. Falls Sie noch genauere Informationen zum Wassergehalt für Ihren Boden mit einer bestimmten Anbaukultur (Weizen, Mais, Grünland) benötigen, nutzen Sie gerne die Fachanwendung „Bodenwasserhaushalt“ im NIBIS® Kartenserver. Sie bietet die Möglichkeit den Verlauf der Bodenfeuchte für einzelne oder mehrere Flächen über einen längeren Zeitraum mit verschiedenen Fruchtfolgen (z.B. 1 Jahr oder länger) zu ermitteln.
Zuletzt aktualisiert: 27.05.2025
folder_code Datenkataloge
/ Geodatensatz
Open Data
arrow_right_alt
settings STAC-API NI DOP20
Es handelt sich bei diesem Dienst um einen STAC (SpatioTemporal Asset Catalog). Dieser STAC stellt statische Digitale Orthophotos im amtlichen Projektionssystem EPSG:25832 (ETRS 89, UTM Zone 32) zur Nutzung und zum Download über eine API bereit. DOP werden aus Orientierten Luftbildern hergestellt und jeweils im Anschluss an eine Befliegung für die neu erfassten Gebiete berechnet. In einem rechnergestützten Verfahren werden die Orientierten Luftbilder auf das Digitale Geländemodell DGM 5 projiziert und zu ATKIS-DOP aufbereitet. Das Ergebnis sind georeferenzierte, digitale fotorealistische Abbildungen der Erdoberfläche, in denen jedem Pixel eine eindeutige Koordinate zugeordnet werden kann. ATKIS-DOP sind maßstabstreu und können so direkt mit Karten gleichen Maßstabs verglichen oder mit Fachdaten, z. B. Straßenplanungen, digital zusammengeführt oder überlagert werden. Die Georeferenzierung der ATKIS-DOP erfolgt im Europäischen Terrestrischen Referenzsystem 1989 in Verbindung mit der Universalen Transversalen Mercator-Abbildung in Zone 32 (ETRS89/UTM32). Die ATKIS-DOP, die dem Produktstandard der Arbeitsgemeinschaft der Vermessungsverwaltungen der Bundesrepublik Deutschland (ADV) entsprechen, stehen flächendeckend für Niedersachsen zur Verfügung. Abhängig von den Bildflügen, werden sie seit 2011 regelmäßig innerhalb von drei Jahren aktualisiert. Mit dem Bildflugjahr 2021 hat das LGLN die Bereitstellung der (klassischen) Digitalen Orthophotos in die Qualitätsstufe TrueDOP überführt und folgt dem Produkt- und Qualitätsstandard für Digitale Orthophotos in der Version 4.1 der Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland (AdV). Durch Verwendung des sog. bildbasierten Digitalen Oberflächenmodells (bDOM) als Entzerrungsfläche wird eine genauere Bildgeometrie erzeugt und perspektivische Verzerrungen oder sichttote Bereiche werden vermieden. Für eine schnelle visuelle Darstellung des STAC kann der Radiant Earth STAC-Browser verwendet werden. Für eine Nutzung der STAC-API in QGIS können Sie das QGIS-Plugin "QGIS STAC API-Browser" verwenden. In ArcGIS Pro können Sie ab der Version 3.2 STAC API Verbindungen herstellen.
Zuletzt aktualisiert: 13.03.2025
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
public Bodenkarte von Niedersachsen 1 : 50 000 - Denitrifizierungspotential des Bodens
Das Denitrifikationspotenzial beschreibt die Fähigkeit des Bodens durch mikrobielle Umsetzungen und unter anaeroben Bedingungen einen Teil des Nitrats wieder in Luftstickstoff (z.T. Lachgas) umzusetzen. Voraussetzungen für den Nitratabbau sind die Präsenz von Nitrat, die Abwesenheit von Sauerstoff und die Anwesenheit von oxidierbarer organischer Materie. Das Denitrifikationspotenzial wird auf Grundlage der niedersachsenweiten Bodenkarte (BK50, Gehrt et al 2021) abgeleitet und gilt bis zu einer Tiefe von zwei Metern. Die Methodik ist im Geobericht 19 (Bug et al. 2020) dargestellt. Jedem Bodentyp ist in Abhängigkeit vom Grund- bzw. Stauwassereinfluss eine Denitrifikationsstufe mit einer mittleren, jährlichen Rate zugeordnet. Insgesamt gibt es fünf Denitrifikationsstufen, die durch mittlere Denitrifikationsraten von 5, 20, 40, 60 und 100 kg N/ha*a (in torfhaltigen Substraten bei hohem Grundwasserstand 150 kg N/ha*a) gekennzeichnet sind. Die niedrigsten Denitrifikationsraten weisen gering humose Standorte auf, bei denen ganzjährig eine Wassersättigung des Bodenkörpers ausgeschlossen wird. Mit Zunahme des Humusgehalts oder durch das Auftreten von temporärer Nässe bei Grund- oder Stauwassereinfluss steigt das Denitrifikationspotenzial der Böden. Die zweite Denitrifikationsstufe steht für eine mittlere Denitrifikationsrate von 20 kg N/ha*a. Grundsätzlich ist mit den höchsten Denitrifikationsraten zu rechnen, sobald Grundwasser in humus- oder schwefelhaltigen Bodenschichten steht. Bei der Denitrifikationsstufe 5 (>> 150 kg N/ha*a) kann die Denitrifikationsrate bis 3 000 kg N/ha*a betragen. Solche Raten sind vor allem in Niedermooren und humusreichen Böden zu finden, bei denen die Grundwasseroberfläche ganzjährig bei = 6 dm u. GOK im Torfkörper ansteht. Da bei der Denitrifikation organische Substanz in wassergesättigten Bodenschichten abgebaut wird, ist vor allem für mineralische Horizonte anzunehmen, dass die Denitrifikationsrate im Laufe der Jahrzehnte und Jahrhunderte abnimmt. Auch Grundwasserabsenkungen können die Denitrifikationsleistung in der Bodenzone eines Standortes deutlich herabsetzen (Wienhaus et al., 2008). Referenzen: BUG, J., HEUMANN, S., MÜLLER, U. & WALDECK, A. (2020): Auswertungsmethoden im Bodenschutz - Dokumentation zur Methodenbank des Niedersächsischen Bodeninformationssystems (NIBIS®). – GeoBerichte 19: 383 S. Hannover: LBEG GEHRT, E., BENNE, I., EVERTSBUSCH, S., KRÜGER, K. & LANGNER, S. (2021): Erläuterung zur BK 50 von Niedersachsen. – GeoBerichte 40: 282 S., 125 Abb., 100 Tab.; Hannover (LBEG). WIENHAUS, S.,HÖPER, H., EISELE, M.,MEESENBURG, H. & SCHÄFER,W. (2008): Nutzung bodenkundlich- hydrogeologischer Informationen zur Ausweisung von Zielgebieten für den Grundwasserschutz - Ergebnisse eines Modellprojektes (NOLIMP) zur Umsetzung der EG-Wasserrahmenrichtlinie. – GeoBerichte 9: 56 S., 13 Abb., 5 Tab., Anh.; Hannover (LBEG).
Zuletzt aktualisiert: 27.05.2025
folder_code Datenkataloge
/ Geodatensatz
Open Data
arrow_right_alt
settings Bodenkarte von Niedersachsen 1 : 50 000 - Denitrifizierungspotential des Bodens (WMS Dienst)
Das Denitrifikationspotenzial beschreibt die Fähigkeit des Bodens durch mikrobielle Umsetzungen und unter anaeroben Bedingungen einen Teil des Nitrats wieder in Luftstickstoff (z.T. Lachgas) umzusetzen. Voraussetzungen für den Nitratabbau sind die Präsenz von Nitrat, die Abwesenheit von Sauerstoff und die Anwesenheit von oxidierbarer organischer Materie. Das Denitrifikationspotenzial wird auf Grundlage der niedersachsenweiten Bodenkarte (BK50, Gehrt et al 2021) abgeleitet und gilt bis zu einer Tiefe von zwei Metern. Die Methodik ist im Geobericht 19 (Bug et al. 2020) dargestellt. Jedem Bodentyp ist in Abhängigkeit vom Grund- bzw. Stauwassereinfluss eine Denitrifikationsstufe mit einer mittleren, jährlichen Rate zugeordnet. Insgesamt gibt es fünf Denitrifikationsstufen, die durch mittlere Denitrifikationsraten von 5, 20, 40, 60 und 100 kg N/ha*a (in torfhaltigen Substraten bei hohem Grundwasserstand 150 kg N/ha*a) gekennzeichnet sind. Die niedrigsten Denitrifikationsraten weisen gering humose Standorte auf, bei denen ganzjährig eine Wassersättigung des Bodenkörpers ausgeschlossen wird. Mit Zunahme des Humusgehalts oder durch das Auftreten von temporärer Nässe bei Grund- oder Stauwassereinfluss steigt das Denitrifikationspotenzial der Böden. Die zweite Denitrifikationsstufe steht für eine mittlere Denitrifikationsrate von 20 kg N/ha*a. Grundsätzlich ist mit den höchsten Denitrifikationsraten zu rechnen, sobald Grundwasser in humus- oder schwefelhaltigen Bodenschichten steht. Bei der Denitrifikationsstufe 5 (>> 150 kg N/ha*a) kann die Denitrifikationsrate bis 3 000 kg N/ha*a betragen. Solche Raten sind vor allem in Niedermooren und humusreichen Böden zu finden, bei denen die Grundwasseroberfläche ganzjährig bei = 6 dm u. GOK im Torfkörper ansteht. Da bei der Denitrifikation organische Substanz in wassergesättigten Bodenschichten abgebaut wird, ist vor allem für mineralische Horizonte anzunehmen, dass die Denitrifikationsrate im Laufe der Jahrzehnte und Jahrhunderte abnimmt. Auch Grundwasserabsenkungen können die Denitrifikationsleistung in der Bodenzone eines Standortes deutlich herabsetzen (Wienhaus et al., 2008). Referenzen: BUG, J., HEUMANN, S., MÜLLER, U. & WALDECK, A. (2020): Auswertungsmethoden im Bodenschutz - Dokumentation zur Methodenbank des Niedersächsischen Bodeninformationssystems (NIBIS®). – GeoBerichte 19: 383 S. Hannover: LBEG GEHRT, E., BENNE, I., EVERTSBUSCH, S., KRÜGER, K. & LANGNER, S. (2021): Erläuterung zur BK 50 von Niedersachsen. – GeoBerichte 40: 282 S., 125 Abb., 100 Tab.; Hannover (LBEG). WIENHAUS, S.,HÖPER, H., EISELE, M.,MEESENBURG, H. & SCHÄFER,W. (2008): Nutzung bodenkundlich- hydrogeologischer Informationen zur Ausweisung von Zielgebieten für den Grundwasserschutz - Ergebnisse eines Modellprojektes (NOLIMP) zur Umsetzung der EG-Wasserrahmenrichtlinie. – GeoBerichte 9: 56 S., 13 Abb., 5 Tab., Anh.; Hannover (LBEG).
Zuletzt aktualisiert: 10.12.2024
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
settings Bodenkarte von Niedersachsen 1 : 50 000 - Denitrifizierungspotential des Bodens (WMS Dienst)
Das Denitrifikationspotenzial beschreibt die Fähigkeit des Bodens durch mikrobielle Umsetzungen und unter anaeroben Bedingungen einen Teil des Nitrats wieder in Luftstickstoff (z.T. Lachgas) umzusetzen. Voraussetzungen für den Nitratabbau sind die Präsenz von Nitrat, die Abwesenheit von Sauerstoff und die Anwesenheit von oxidierbarer organischer Materie. Das Denitrifikationspotenzial wird auf Grundlage der niedersachsenweiten Bodenkarte (BK50, Gehrt et al 2021) abgeleitet und gilt bis zu einer Tiefe von zwei Metern. Die Methodik ist im Geobericht 19 (Bug et al. 2020) dargestellt. Jedem Bodentyp ist in Abhängigkeit vom Grund- bzw. Stauwassereinfluss eine Denitrifikationsstufe mit einer mittleren, jährlichen Rate zugeordnet. Insgesamt gibt es fünf Denitrifikationsstufen, die durch mittlere Denitrifikationsraten von 5, 20, 40, 60 und 100 kg N/ha*a (in torfhaltigen Substraten bei hohem Grundwasserstand 150 kg N/ha*a) gekennzeichnet sind. Die niedrigsten Denitrifikationsraten weisen gering humose Standorte auf, bei denen ganzjährig eine Wassersättigung des Bodenkörpers ausgeschlossen wird. Mit Zunahme des Humusgehalts oder durch das Auftreten von temporärer Nässe bei Grund- oder Stauwassereinfluss steigt das Denitrifikationspotenzial der Böden. Die zweite Denitrifikationsstufe steht für eine mittlere Denitrifikationsrate von 20 kg N/ha*a. Grundsätzlich ist mit den höchsten Denitrifikationsraten zu rechnen, sobald Grundwasser in humus- oder schwefelhaltigen Bodenschichten steht. Bei der Denitrifikationsstufe 5 (>> 150 kg N/ha*a) kann die Denitrifikationsrate bis 3 000 kg N/ha*a betragen. Solche Raten sind vor allem in Niedermooren und humusreichen Böden zu finden, bei denen die Grundwasseroberfläche ganzjährig bei = 6 dm u. GOK im Torfkörper ansteht. Da bei der Denitrifikation organische Substanz in wassergesättigten Bodenschichten abgebaut wird, ist vor allem für mineralische Horizonte anzunehmen, dass die Denitrifikationsrate im Laufe der Jahrzehnte und Jahrhunderte abnimmt. Auch Grundwasserabsenkungen können die Denitrifikationsleistung in der Bodenzone eines Standortes deutlich herabsetzen (Wienhaus et al., 2008). Referenzen: BUG, J., HEUMANN, S., MÜLLER, U. & WALDECK, A. (2020): Auswertungsmethoden im Bodenschutz - Dokumentation zur Methodenbank des Niedersächsischen Bodeninformationssystems (NIBIS®). – GeoBerichte 19: 383 S. Hannover: LBEG GEHRT, E., BENNE, I., EVERTSBUSCH, S., KRÜGER, K. & LANGNER, S. (2021): Erläuterung zur BK 50 von Niedersachsen. – GeoBerichte 40: 282 S., 125 Abb., 100 Tab.; Hannover (LBEG). WIENHAUS, S.,HÖPER, H., EISELE, M.,MEESENBURG, H. & SCHÄFER,W. (2008): Nutzung bodenkundlich- hydrogeologischer Informationen zur Ausweisung von Zielgebieten für den Grundwasserschutz - Ergebnisse eines Modellprojektes (NOLIMP) zur Umsetzung der EG-Wasserrahmenrichtlinie. – GeoBerichte 9: 56 S., 13 Abb., 5 Tab., Anh.; Hannover (LBEG).
Zuletzt aktualisiert: 27.05.2025
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
public Bodenkarte von Niedersachsen 1 : 50 000 - Denitrifizierungspotential des Bodens
Das Denitrifikationspotenzial beschreibt die Fähigkeit des Bodens durch mikrobielle Umsetzungen und unter anaeroben Bedingungen einen Teil des Nitrats wieder in Luftstickstoff (z.T. Lachgas) umzusetzen. Voraussetzungen für den Nitratabbau sind die Präsenz von Nitrat, die Abwesenheit von Sauerstoff und die Anwesenheit von oxidierbarer organischer Materie. Das Denitrifikationspotenzial wird auf Grundlage der niedersachsenweiten Bodenkarte (BK50, Gehrt et al 2021) abgeleitet und gilt bis zu einer Tiefe von zwei Metern. Die Methodik ist im Geobericht 19 (Bug et al. 2020) dargestellt. Jedem Bodentyp ist in Abhängigkeit vom Grund- bzw. Stauwassereinfluss eine Denitrifikationsstufe mit einer mittleren, jährlichen Rate zugeordnet. Insgesamt gibt es fünf Denitrifikationsstufen, die durch mittlere Denitrifikationsraten von 5, 20, 40, 60 und 100 kg N/ha*a (in torfhaltigen Substraten bei hohem Grundwasserstand 150 kg N/ha*a) gekennzeichnet sind. Die niedrigsten Denitrifikationsraten weisen gering humose Standorte auf, bei denen ganzjährig eine Wassersättigung des Bodenkörpers ausgeschlossen wird. Mit Zunahme des Humusgehalts oder durch das Auftreten von temporärer Nässe bei Grund- oder Stauwassereinfluss steigt das Denitrifikationspotenzial der Böden. Die zweite Denitrifikationsstufe steht für eine mittlere Denitrifikationsrate von 20 kg N/ha*a. Grundsätzlich ist mit den höchsten Denitrifikationsraten zu rechnen, sobald Grundwasser in humus- oder schwefelhaltigen Bodenschichten steht. Bei der Denitrifikationsstufe 5 (>> 150 kg N/ha*a) kann die Denitrifikationsrate bis 3 000 kg N/ha*a betragen. Solche Raten sind vor allem in Niedermooren und humusreichen Böden zu finden, bei denen die Grundwasseroberfläche ganzjährig bei = 6 dm u. GOK im Torfkörper ansteht. Da bei der Denitrifikation organische Substanz in wassergesättigten Bodenschichten abgebaut wird, ist vor allem für mineralische Horizonte anzunehmen, dass die Denitrifikationsrate im Laufe der Jahrzehnte und Jahrhunderte abnimmt. Auch Grundwasserabsenkungen können die Denitrifikationsleistung in der Bodenzone eines Standortes deutlich herabsetzen (Wienhaus et al., 2008). Referenzen: BUG, J., HEUMANN, S., MÜLLER, U. & WALDECK, A. (2020): Auswertungsmethoden im Bodenschutz - Dokumentation zur Methodenbank des Niedersächsischen Bodeninformationssystems (NIBIS®). – GeoBerichte 19: 383 S. Hannover: LBEG GEHRT, E., BENNE, I., EVERTSBUSCH, S., KRÜGER, K. & LANGNER, S. (2021): Erläuterung zur BK 50 von Niedersachsen. – GeoBerichte 40: 282 S., 125 Abb., 100 Tab.; Hannover (LBEG). WIENHAUS, S.,HÖPER, H., EISELE, M.,MEESENBURG, H. & SCHÄFER,W. (2008): Nutzung bodenkundlich- hydrogeologischer Informationen zur Ausweisung von Zielgebieten für den Grundwasserschutz - Ergebnisse eines Modellprojektes (NOLIMP) zur Umsetzung der EG-Wasserrahmenrichtlinie. – GeoBerichte 9: 56 S., 13 Abb., 5 Tab., Anh.; Hannover (LBEG).
Zuletzt aktualisiert: 10.12.2024
folder_code Datenkataloge
/ Geodatensatz
Open Data
arrow_right_alt
settings WFS Fachkarte Freizeit und Tourismus Landkreis Diepholz
Kartendienst mit folgenden Themen zum Download: Hallenbäder (Basis ALKIS), Freibäder (Basis ALKIS), Radrouten Fahrradleitsystem LK Diepholz (Basis DTK25), Radroutenwegweiser Fahrradleitsystem LK Diepholz (Basis DTK25), Radlufttankstellen (ALKIS), Wanderwege Stadt Bassum (ALKIS)
Zuletzt aktualisiert: 03.03.2025
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
settings WMS Freizeit und Tourismus Landkreis Diepholz
Kartendienst mit folgenden Themen: Hallenbäder (Basis ALKIS), Freibäder (Basis ALKIS), Radrouten Fahrradleitsystem LK Diepholz (Basis DTK25), Radroutenwegweiser Fahrradleitsystem LK Diepholz (Basis DTK25), Radluftankstellen (Basis ALKIS), Wanderwege Stadt Bassum ---- Den Downloadservice zu den Einzelthemen (shp, dxf, dwg) finden Sie unter DOWNLOAD-LINKS ----
Zuletzt aktualisiert: 03.03.2025
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
public Bericht: "Makrozoobenthos: Lütetsburger Plate – TMAP-Monitoring (1999-2004)"
„Mit dem „Trilateral Monitoring and Assessment Program (TMAP)“ wurde eine integrierte und methodisch einheitlichere Überwachung des Wattenmeerökosystems durch die drei Anrainerstaaten Niederlande, Deutschland und Dänemark eingeführt. Vor dem Hintergrund mögli-cher anthropogener Verunreinigungen des Wattenmeeres dient das Monitoring dem Ziel, Veränderungen in den natürlichen Prozessen, dem Artenreichtum und den Gemeinschafts-strukturen des Makrozoobenthos zu erfassen. Im Zuge der Umsetzung dieses Programmes beauftragte die Nationalparkverwaltung Niedersächsisches Wattenmeer das damalige NLÖ Forschungsstelle Küste im Herbst 1998 mit der Einrichtung von vier Monitoringstationen zur Überwachung des Makrozoobenthos auf der Lütetsburger Plate. Zur Festlegung der Monitoringstationen wurde vom NLÖ Forschungsstelle Küste im November 1998 im Rahmen einer Voruntersuchung eine Transektbeprobung auf der Lütetsburger Plate bzw. dem angrenzenden Ostermarscher Watt durchgeführt, um repräsentative Biotopbereiche für die Einrichtung der 4 Dauerstationen auszuwählen. Seit 1999 werden vier Monitoringstationen zur Überwachung des Makrozoobenthos auf der Lütetsburger Plate untersucht. Zusammen mit den bereits seit 1976 bestehenden Dauerstationen im Norderneyer Inselwatt, die vom heutigen NLWKN Betriebsstelle Brake-Oldenburg betreut werden, ist damit ein durchgehendes eulitorales Stationsprofil von der Festlandslinie bis zum Inselwatt vorhanden. Ergänzt wird dieses Profil seeseitig durch sublitorale Dauerstationen im Inselvorfeld der Insel Norderney, die seit 1978 vom Forschungsinstitut Senckenberg in Wilhelmshaven untersucht werden. Zusätzlich besteht seit 1994 eine Dauerstation auf der Lütetsburger Plate speziell zur Überwachung von Besatz, Altersverteilung und Flächenausdehnung der Miesmuschel Mytilus edulis. Diese Station ist Bestandteil des niedersächsischen Programms zur Erfassung der eulitoralen Miesmuschelvorkommen. Frühere, flächendeckende benthosbiologische Untersuchungen zur Bodenfauna der Lütetsburger Plate liegen von KRAUSE (1952) und MÜLLER (1964) vor. Sedimentologische Bestandsaufnahmen wurden von MÜLLER (1964) und RAGUTZKI (1978) durchgeführt. Eine sedimentologische Auswertung anhand von Luftbildaufnahmen der Jahre 1951, 1966, 1975 und 1996 wurde von MEYER & RAGUTZKI (1999) fertig gestellt. Im Rahmen der Überwachung der eulitoralen Miesmuschelvorkommen an der niedersächsischen Küste wurden die Muschelbänke des Gebietes in den letzten Jahren wiederholt kartiert (OBERT & MICHAELIS 1989; MICHAELIS et al. 1995, ZENS et al. 1997, HERLYN & MILLAT 1997, MILLAT & HERLYN 1999). Seit 1994 wird eine Dauerstation zur Überwachung von Besatz, Altersverteilung und Flächenausdehnung der Miesmuschel auf der Plate betrieben (MILLAT & HERLYN 1999). Auswertungen dazu finden sich dem 2004 fertig gestellten Abschlußbericht zu wissenschaftlichen Begleituntersuchungen zur Aufbauphase des Miesmuschelmanagements im Nationalpark „Niedersächsisches Wattenmeer“ (MILLAT & HERLYN 2004). Zur Fauna des Riffgat existieren Arbeiten von WAGENKNECHT (1999) und im Rahmen von Klappstellenuntersuchungen durch GROTJAHN (2001). Parallel zum bestehenden Untersuchungsprofil des TMAP-Monitoring auf der Lütetsburger Plate wurden ca. 800 m östlich der Plate im Rahmen von geplanten Trassenanbindungen von Offshore-Windparks qualitative und quantitative Untersuchungen zu den Makrozoobenthosgemeinschaften durchgeführt (STEUWER & GROTJAHN 2002, 2003). Aus dem laufenden TMAP-Monitoringprogramm wurden bisher nur jährliche Überwachungsberichte erstellt. Mit diesem Bericht werden erstmals die Ergebnisse der Untersuchungen über einen längeren Zeitraum zusammenfassend ausgewertet. Ziel der vorliegenden Arbeit ist es, eine Gesamtauswertung der erhobenen Überwachungsdaten vorzulegen. Dabei soll insbesondere die Bestandsentwicklung der eulitoralen Makrofaunagemeinschaft aufgezeigt und eine Darstellung der sedimentologischen Verhältnisse vorgenommen werden. Hinter_CUTABSTRACT_
Zuletzt aktualisiert: 20.02.2014
folder_code Datenkataloge
/ Geodatensatz
arrow_right_alt
261 - 270 von 6.182 Ergebnissen
first_page arrow_left_alt 23 24 25 26
27
28 29 30 31 arrow_right_alt last_page

Räumliche Begrenzung der Suche festlegen

Umweltinformationsportal des Landes Niedersachsen
Logo
©
Niedersächsisches Ministerium für
Umwelt, Energie und Klimaschutz
Über Kontakt Impressum Datenschutz Barrierefreiheit
MVP