Logo Logo
  • Start
  • Suche
  • Karte
  • Dashboard
  • Über
  • |
  • Kontakt
  • Start
  • Suche
  • Karte
  • Dashboard
  • Über
  • Kontakt
  • Impressum
  • Datenschutz
  • Barrierefreiheit
Was suchst Du?
Umweltinformationen werden gesucht. Bitte warten...
Filter filter_list Filter einstellen

Begrenze die Suche räumlich

search
2.147.170 Ergebnisse
2.147.170 Ergebnisse
Anzeigen:
public Tongehalte (17%) des obersten Mineralbodenhorizonts für alle Feldblöcke in Niedersachsen, Bremen und Hamburg gemäß § 17 der GAP-Konditionalitäten-Verordnung (GAPKondV) GLÖZ 6
Tongehalte des obersten Mineralbodenhorizonts für alle Feldblöcke in Niedersachsen, Bremen und Hamburg gemäß GLÖZ 6 GAPKondV § 17 „Mindestanforderung an die Bodenbedeckung in den sensibelsten Zeiten“. In dieser Karte sind für die aktuellen Feldblöcke die Bodenarten des obersten Mineralbodenhorizonts sowie die dazugehörenden Tongehalte nach Bodenkundlicher Kartieranleitung 5. Auflage (KA5) dargestellt. Basis für Niedersachsen sind die übersetzten Bodenschätzungsdaten 2018. Bereiche ohne Bodenschätzung sind durch die Bodenkarte 1:50.000 (BK50) aufgefüllt. Für Bremen werden die Bodendaten aus der Bodenschätzung und der Bodenübersichtskarte 1:50.000 (BÜK50). Für Hamburg stammen die Bodendaten aus der Bodenübersichtskarte 1:200.000 (BÜK200). Diese Karte gilt als Hinweiskarte auf die Tongehalte bezüglich der abweichenden Anforderungen zur Mindestbodenbedeckung. Hinweis: Diese Tonkarte (Tongehalt 17 %) bezieht sich nur auf GLÖZ 6 / GAPKondV § 17 „Mindestanforderung an die Bodenbedeckung in den sensibelsten Zeiten“. Für eine Ausnahme vom Pflugverbot über Winter für erosionsgefährdete Flächen (GLÖZ 5, KWasser1 und KWasser2) gilt weiterhin ein Tongehalt von über 25 % und ist geregelt in § 3 der niedersächsischen Erosionsschutzverordnung.
Zuletzt aktualisiert: 27.05.2025
folder_code Datenkataloge
/ Geodatensatz
INSPIRE Open Data
arrow_right_alt
settings Hydrogeologische Karte von Niedersachsen 1 : 50 000 – Mittlere jährliche Grundwasserneubildungsrate für den 30-jährigen Zeitraum 2031-2060 im hydrologischen Winterhalbjahr, Kein-Klimaschutz-Szenario (RCP8.5) (WMS Dienst)
Die Karte zeigt die modellierte mittlere jährliche Grundwasserneubildung für den 30-jährigen Zeitraum 2031-2060 im hydrologischen Winterhalbjahr (Nov.-Apr.) in mm/a berechnet mit dem „Kein-Klimaschutz“-Szenario (RCP8.5). Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche Klimaprojektionsdaten genutzt. Die Klimaprojektionsdaten stellen die Ergebnisse eines Ensembles aus verschiedenen Klimamodellen dar (das Niedersächsische Klimaensemble AR5-NI v2.1 siehe Hajati et al. (2022)). Die Daten wurden vom Deutschen Wetterdienst bereitgestellt. Datengrundlage dessen ist das EURO-CORDEX Ensemble (Jacob et al., 2014). Im Rahmen des BMVI-Expertennetzwerks fand durch den DWD eine Herunterskalierung von einem 12,5 km auf ein 5 km Raster statt. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden. Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 500 x 500 m Raster für mGROWA22 herunterskaliert.
Zuletzt aktualisiert: 10.12.2024
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
settings Chlorid-Hintergrundwerte im Grundwasser von Niedersachsen 1 : 500.000 (WMS Dienst)
Die natürliche Grundwasserbeschaffenheit ist maßgeblich durch die Wechselwirkung zwischen Grundwasser und der durchströmten Gesteinsmatrix geprägt. In Deutschland sind die Grundwässer jedoch durch anthropogene Handlungen wie z.B. Ackerbau, Rodung und Maßnahmen zur Grundwasserentnahme ubiquitär überprägt. Einflüsse einer Jahrhunderte alten Kulturlandschaft können dennoch als natürlich betrachtet werden (Funkel et al. 2004). Zur Erfüllung der Aufgaben aus der EG-Wasserrahmenrichtlinie (EG-WRRL) wurden für die hydrogeologischen Teilräume Niedersachsens (Elbracht et al., 2016) Hintergrundwerte u.a. für gelöstes Chlorid im Grundwasser ermittelt. Die Hintergrundwerte von gelöstem Chlorid umfassen die Gehalte, welche sich unter natürlichen Bedingungen durch den Kontakt des Grundwassers mit der umgebenden Gesteinsmatrix des Grundwasserleiters sowie in Kontakt mit einer Jahrhunderte alten Kulturlandschaft einstellen. Die Karte zeigt farblich differenziert Klassen der Chlorid-Hintergrundwerte der hydrogeologischen Teilräume Niedersachsens. Gemäß der deutschen Trinkwasserverordnung beträgt der Grenzwert für Chlorid im Trinkwasser 250 mg/L, der Schwellenwert für Grundwasser ist identisch. Durch Versalzungen im Küstenraum und in der Nähe natürlich vorkommender Salzstöcke kann es lokal zu erheblich höheren Konzentrationen kommen. Durch das Auswählen eines Teilraumes gelangt man zu weiterführenden Informationen (z.B. Probenanzahl, zusammengefasste Teilräume, etc.). Informationen zu den Daten: Die genutzten Grundwasseranalysen stammen aus der Datenbank des Niedersächsischen Bodeninformationssystems (NIBIS). Hintergrundwerte sind definiert als das 90.-Perzentil der Normalpopulation der geogenen Konzentration des analysierten Parameters. Zur Bestimmung der Hintergrundwerte wurde die jeweils aktuellste Analyse einer Grundwassermessstelle verwendet. Bei zu geringer Probenzahl (n < 10) wurden, soweit möglich, lithologisch ähnliche Teilräume zu einem gemeinsamen Hintergrundwert zusammengefasst. Die Ermittlung der Hintergrundwerte folgte dem Verfahren zur statistischen Auswertung der Daten mittels Wahrscheinlichkeitsnetz der Staatlichen Geologischen Dienste (Wagner et al., 2011). Quellen: ELBRACHT, J., MEYER, R. & REUTTER, E. (2016): Hydrogeologische Räume und Teilräume in Niedersachsen. – GeoBerichte 3, LBEG, Hannover. DOI: 10.48476/geober_3_2016. Funkel R., Voigt H.-J., Wendland F., Hannappel S. (2004): Die natürliche ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland, Forschungszentrum Jülich GmbH (47), ISBN: 3-89336-353-X. WAGNER, B., WALTER, T., HIMMELSBACH, T., CLOS, P., BEER, A., BUDZIAK, D., DREHER, T., FRITSCHE, H.-G., HÜBSCHMANN, M., MARCZINEK, S., PETERS, A., POESER, H., SCHUSTER, H., STEINEL, A., WAGNER, F. & WIRSING, G. (2011): Hydrogeochemische Hintergrundwerte der Grundwässer Deutschlands als Web Map Service. – Grundwasser 16(3): 155-162; Springer, Berlin / Heidelberg.
Zuletzt aktualisiert: 27.05.2025
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
public Moore mit besonderer Bedeutung für den Biotopschutz
Die dargestellten Biotoptypen umfassen selektiv erfasste Biotoptypen und FFH-Lebensraumtypen innerhalb der FFH-Gebiete (FFH-Basiserfassung) und in ausgewählten Bereichen außerhalb der niedersächsischen FFH-Gebiete (Aktualisierung der landesweiten Biotopkartierung) auf naturnahen bis schwach degenerierten Moorstandorten und weiteren kohlenstoffreichen Böden mit Bedeutung für den Klimaschutz (BHK50). Bei den dargestellten Biotoptypen handelt es sich um Biotoptypen mit besonderer Bedeutung für den Biotopschutz, d.h. um Biotoptypen mit einer sehr hohen (V) bis hohen (IV) Wertigkeit gemäß der Wertstufen nach von Drachenfels (2012: Einstufungen der Biotoptypen in Niedersachsen. Informationsdienst Naturschutz Niedersachsen 1/2012. Berücksichtigt sind zudem alle diesbezüglichen Aktualisierungen im NLWKN-Internetauftritt). Als Bezugsraum für die Biotopauswahl wurde die Kulisse der kohlenstoffreichen Böden mit Bedeutung für den Klimaschutz (BHK50) verwendet. Dem NLWKN vorliegende qualitätsgeprüfte kartierte Biotoptypen, die gemäß Kartierschlüssel Niedersächsischer Biotoptypen ausschließlich auf organischen Standorten vorkommen, wurden auch außerhalb der zuvor genannten Bodenkulisse abgebildet.Die FFH-Lebensraumtypen (LRT: durch geographische, abiotische und biotische Merkmale gekennzeichnete völlig natürliche oder naturnahe terrestrische oder aquatische Gebiete) gem. Anhang I der FFH-Richtlinie 92/43/EWG des Rates vom 21. Mai 1992 - zur Erhaltung der natürlichen Lebensräume sowie der wildlebenden Tiere und Pflanzen - werden in den niedersächsischen FFH-Gebieten flächendeckend kartiert und sollen auch landesweit erfasst werden. Biotope, die innerhalb der FFH-Gebiete keinen LRT-Status aufweisen werden nicht in den digitalen Karten vermerkt. Die hier dargestellten Moorbiotope außerhalb der FFH-Gebiete wurden ebenfalls thematisch (hinsichtlich ihrer Wertigkeit, ihres Lebensraumtyps o.Ä.) selektiv ausgewählt und erfasst. Es handelt sich daher um keine flächendeckende Darstellung der Biotoptypen auf Mooren. Versiegelte, besiedelte, innerörtliche Bereiche wurden aufgrund mangelnder Bedeutung für den Moorschutz nicht abgebildet.Bei den dargestellten Flächen handelt es sich um Biotopkomplexe. Aus diesen wird in der Legende aus darstellungstechnischen Gründen lediglich der dominanteste bedeutsame Moorbiotoptyp (MBdtsDom) in Form einer abgeleiteten Moorbiotopkagegorie abgebildet. Die Felder zum Schutzstatus, Wertstufen, Seltenheit, Nährstoffempfindlichkeit, Grundwasserabhängigkeit etc. beziehen sich in diesem Datenbestand ebenfalls auf den dominanten bedeutsamen Moorbiotoptyp. Aus der Attributttabelle des Datenbestandes sind jedoch auch die weiteren enthaltenen Biotoptypen bzw. Lebensraumtypen sowie deren prozentuale Flächenanteile ersichtlich.
Zuletzt aktualisiert: 10.09.2024
folder_code Datenkataloge
/ Geodatensatz
Open Data
arrow_right_alt
public Bericht: "Kleientnahme Salzwiesen: Entwicklung; ökologische Wertigkeit – Avifauna (2002)"
„Im Rahmen des Teilprojektes „Ökologische Wertigkeit bestehender Kleientnahmen – Avifauna“ wurde die Wiederinanspruchnahme von Püttflächen durch Brutvögel in verschiedenen Salzwiesengebieten im Jadebusen und Elisabeth-Außengroden untersucht. In 8 Pütten, die sich bezüglich Lage oder Alter unterscheiden, wurden über einen Zeitraum von 10 Jahren Brutvogelkartierungen durchgeführt. Um die Besiedlung der Pütten in einen Vergleichsrahmen stellen zu können, wurden 9 gemähte oder ungenutzte Vergleichsflächen in alten Salzwiesen über 5-10 Jahre untersucht, daneben wurden über kürzere Zeiträume zum Teil großflächige Salzwiesengebiete im Jadebusen kartiert. Durch die vorliegenden Ergebnisse können die langfristigen Besiedlungsabläufe in Kleipütten heute in ihren Grundzügen beschrieben werden. Es zeigt sich aber auch, dass die Sukzession in Pütten oft gebietsspezifisch verläuft und Ergebnisse aus einem Untersuchungsgebiet daher nicht pauschal auf andere Gebiete übertragbar sind. […] Insgesamt wird aus den zusammengestellten Untersuchungsergebnissen deutlich, dass nach einer Kleientnahme im Außendeichsbereich die betroffene Fläche zunächst ihre vorherigen ökologischen Funktionen als Lebensraum von Pflanzen und Tieren der Salzwiesen für die Dauer einiger Jahre verliert und an ihre Stelle andere Funktionen treten. Im Zug der weiteren Entwicklung der Pütte bildet sich dann allerdings ein naturnahes und vielgestaltiges Gewässersystem und Bodenrelief aus, das eine vielfältige Biotopstruktur mit unterschiedlichen Bruthabitaten bedingt. Die Pütten höheren Alters, in der sich verschiedene Salzwiesenzonen bis hin zur oberen Salzwiese wieder ausgebildet haben, werden vom typischen Brutvogel-Artenspektrum ungenutzter Salzwiesen überwiegend wieder in gleichem oder höherem Maße als Bruthabitate angenommen wie die umliegenden Flächen.“
Zuletzt aktualisiert: 10.12.2021
folder_code Datenkataloge
/ Geodatensatz
arrow_right_alt
settings 3D-Modell Nordsee – Teilmodell Quartär - Pleistozänbasis - Mächtigkeit - 50 m Intervalle (WMS Dienst)
Auf Grund unterschiedlicher Erkundungsmöglichkeiten standen für die onshore-Bereiche (von der 10 m Wassertiefenlinie bis zum Festland) und offshore-Bereiche (ab der 10 m Wassertiefenlinie) unterschiedliche Eingangsdaten für die 3D-Modellierung zur Verfügung. Für den offshore-Bereich wurden, aufgrund der begrenzten Anzahl tiefer und datierter Bohrungen, als Datengrundlage für das 3D-Modell vorrangig geophysikalische Daten verwendet. Im onshore-Bereich wurden bohrungsgestützte, vernetzte geologische Profilschnitte zur Generierung der Flächen verwendet. Die Fläche der Quartärbasis weist einige Abweichungen von der bisherigen Karte der Tiefenlage der Quartärbasis von Brückner-Röhling et al. (2005) auf. Die Abweichungen bewegen sich im Bereich zwischen +100 m und -400 m. Durch die tiefere Lage der neuen Quartärbasisfläche erhöht sich die Mächtigkeit der quartären Sedimente, je nach verwendetem Geschwindigkeitsmodell, das für die Zeit/Tiefen-Umrechnung der Seismik verwendet wurde, auf über 1.200 m im NW-Teil. Für die Basisfläche der pleistozänen Ablagerungen wurden sowohl Tiefenlagenkarten (in m unter NN) als auch Mächtigkeitskarten (in m) in 10 m und 50 m Intervallen erstellt.
Zuletzt aktualisiert: 10.12.2024
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
settings Hydrogeologische Karte von Niedersachsen 1 : 50 000 – Mittlere monatliche Grundwasserneubildung 1991 - 2020 im März, Methode mGROWA22 (WMS Dienst)
Die Karte zeigt die mittlere monatliche Grundwasserneubildung für den Monat März im 30-jährigen Zeitraum 1991-2020. Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche gemessene und anschließend räumlich interpolierte Klimabeobachtungsdaten des Deutschen Wetterdienstes genutzt. Diese sind die potenzielle Verdunstung, die auf Grundlage der FAO-Grasreferenzverdunstung berechnet wurde (DWD, unveröffentlicht) und der Niederschlag basierend auf dem REGNIE-Produkt (Rauthe et al, 2013), welche nach Richter korrigiert wurden (Richter, 1995). Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 100 x 100 m Raster für mGROWA22 herunterskaliert.
Zuletzt aktualisiert: 10.12.2024
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
public Geotechnische Klassifizierung der Sedimente in Anlehnung an DIN 18311 (2010) - Nassbaggerarbeiten Bohrdatenauswertung 0-1m GOK
Die Karte Sedimentklassen für Nassbaggerarbeiten stellt im Maßstab 1 : 250.000 Informationen zur Verbreitung von Sedimenten gleicher Beschaffenheit an der Meeresbodenoberfläche bis in eine Teufe von 0,2 m sowie für die Teufenbereiche 0-1 m und 0-2 m in Anlehnung an DIN 18311 (2010) – Nassbaggerarbeiten in 7 Klassen dar (siehe Legende). Grundlage der Kartendarstellung sind Sedimentproben von der Meeresbodenoberfläche bis zu einer Teufe von 0,2 m sowie Schichtbeschreibungen von Bohrungen in 0,2 m Teufe sowie in den oben genannten Teufenbereichen, die bis Januar 2013 im deutschen Nordseeraum zur Verfügung standen. Diese Grundlagendaten sind in Datenbanken beim BSH und LBEG abgelegt, zukünftig erhobene Daten werden darin integriert. Nassbaggerarbeiten sind erforderlich, wenn z.B. in Gewässern durch Sedimentumlagerung entstandene Untiefen in Schifffahrtsstraßen zu beseitigen sind, Material für Küstenschutzmaßnahmen oder Bauzwecke aus dem Meer entnommen werden muss sowie bei der Pipeline- oder Kabelverlegung im Meeresboden. Eine Grundlage für die Beauftragung und Umsetzung der entsprechenden Arbeiten ist die “DIN 18311 - Allgemeine Technische Vorschriften für Bauleistungen – Nassbaggerarbeiten“. Diese klassifiziert die anzutreffenden Bodenarten entsprechend ihrer Beschaffenheit in 10 Klassen, die die Grundlage für die Auswertung der Sedimentdaten am Meeresboden der Nordsee sind.
Zuletzt aktualisiert: 10.12.2024
folder_code Datenkataloge
/ Geodatensatz
Open Data
arrow_right_alt
settings Hydrogeologische Übersichtskarte von Niedersachsen 1 : 200 000 - Basis des oberen Grundwasserleiterkomplexes (WFS Dienst)
Die Karte "Basis des oberen Grundwasserleiterkomplexes" verdeutlicht die großräumige Verbreitung und die Tiefenlage (in Meter zu NN) des oberen überregional bedeutenden Grundwasserleiterkomplexes. Je nach Informationsdichte werden die Angaben zur Tiefenlage mehr oder weniger stark zusammengefasst. Sind innerhalb einer Farbfläche nur teilweise weitere Untergliederungen möglich, erscheinen diese Tiefeninformationen als farbige Linien in den Flächen. Als Grundwasserleiter werden bei dieser Kartendarstellung alle Sande (bis in den Feinstsandbereich) und Kiese eingestuft, deren Schluff- oder Tongehalt unter 5% liegt. So wird auf Grund der Schichtbeschreibung z.B. ein sehr schwach schluffiger Feinsand noch als Grundwasserleiter angesprochen, während ein schwach schluffiger Feinsand als gering wasserleitend bezeichnet wird. In den Lockergesteinsgebieten Niedersachsens werden großräumig zwei übergeordnete Grundwasserleiterkomplexe unterschieden. Der obere Grundwasserleiterkomplex setzt sich aus Sanden und Kiesen des Pleistozän sowie aus Sanden des Pliozän und des Obermiozän zusammen. Der untere Grundwasserleiterkomplex besteht aus durchlässigen Sedimenten des Unter- bis Mittelmiozän, den sog. Braunkohlensanden. Getrennt werden die beiden Grundwasserleiterkomplexe durch den Grundwasserhemmer Oberer Glimmerton, der aus schluffig-tonigen Sedimenten des Mittel- bis Obermiozän besteht. In den Gebieten, in denen als trennende Zwischenschicht (Grundwasserhemmer) der Obere Glimmerton fehlt, ist - großräumig betrachtet - in der Regel nur ein Grundwasserleiterkomplex ausgebildet. Dieser Fall tritt sowohl im Bereich tief eingeschnittener Rinnen, als auch im Bereich stark herausgehobener Salzstöcke auf. Im östlichen Teil von Niedersachsen ist der Obere Glimmerton flächenhaft abgetragen worden. Im Kartenbild wird daher in diesen Gebieten nur ein Grundwasserleiterkomplex dargestellt und als oberer Grundwasserleiterkomplex bezeichnet, obwohl ihm in diesen Gebieten auch die durchlässigen Sedimente der Braunkohlensande, die sonst den unteren Grundwasserleiterkomplex bilden, zugerechnet werden. Die Basis des oberen Grundwasserleiterkomplexes bildet also entweder der Obere Glimmerton oder, bei dessen Fehlen, untermiozäne bis oligozäne Tone und Schluffe. Auf der Karte werden in der Farbskala zwei Bereiche unterschieden: 1. Gebiete, in denen der Aquiferkomplex ungegliedert ist, weil entweder die Trennschicht Glimmerton fehlt oder ein unterer untermiozäner Grundwasserleiter nicht ausgebildet ist. 2. Gebiete, in denen der Aquiferkomplex gegliedert ist, d.h. der Obere Glimmerton ist großflächig verbreitet und trennt ein oberes von einem unteren Stockwerk. Es ist möglich, dass regional andere geringdurchlässige Sedimente, wie z.B. quartäre Beckentone, die Funktion von trennenden Zwischenschichten übernehmen können, die dann eine räumlich begrenzte Aufteilung des Grundwasserleiterkomplexes in zwei oder mehrere Grundwasserstockwerke bewirken. Auf Grund der vorliegenden Daten lassen sich aber zu wenig Aussagen über die flächenhafte Verbreitung von gering durchlässigen quartären Sedimenten machen, da sie nicht wie der Glimmerton über größere Bereiche eine konstante Erscheinungsform aufweisen, sondern in ihrer Fazies auch über kurze Distanzen sehr unterschiedlich ausgebildet sein können. Daher können sie in dieser Übersichtskarte nicht berücksichtigt werden, obwohl sie für die regionale Grundwasserhydraulik oft eine große Bedeutung haben. Die Mächtigkeit des oberen Grundwasserleiterkomplexes wird in einer separaten Karte dargestellt.
Zuletzt aktualisiert: 10.12.2024
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
settings Sulfatsaure Böden in niedersächsischen Küstengebieten 1 : 50 000 - Tiefenbereich 0-2 m (WMS Dienst)
In dieser Karte wird das Risiko für die Verbreitung von aktuell und potenziell sulfatsauren Böden von 0 bis 2 m Tiefe dargestellt. Wichtig: Diese Karte wurde neu überarbeitet anhand der neuen Bodenkarte BK50, für deren Erstellung insbesondere auch die hier relevanten Küstengebiete neu kartiert wurden. Daher kann es deutlich andere Einschätzungen geben als in der vorherigen Karte der Sulfatsauren Böden (Tiefenbereich 0-2 m). Die erläuternden Geofakten 24 befinden sich derzeit noch in Überarbeitung. Sogenannte „Sulfatsaure Böden“ kommen in Niedersachsen vor allem im Bereich der Küstengebiete vor. Diese Bezeichnung umfasst sowohl Böden als auch tiefergelegene Sedimente sowie Torfe. Charakteristisch für die verschiedenen sulfatsauren Materialien (SSM) sind hohe, geogen bedingte Gehalte an reduzierten anorganischen Schwefelverbindungen. Ursprünglich gelangte der Schwefel in Form von Sulfationen aus dem Meerwasser in die holozänen Ablagerungen. Aufgrund wassergesättigter, anaerober Bedingungen wurden die Sulfationen zu Sulfid reduziert und vor allem als Pyrit und FeS über lange Zeit wegen konstant hoher Grundwasserstände konserviert. Typische SSM sind tonreiche Materialien mit höheren Gehalten an organischer Substanz und/oder groben Pflanzenresten sowie über- und durchschlickte Niedermoortorfe. Bei Entwässerung und Belüftung dieser Materialien kommt es zur Oxidation der Sulfide und zur Bildung von Schwefelsäure, wenn sie z. B. im Rahmen von Bauvorhaben entwässert oder aus dem natürlichen Verbund herausgenommen werden. Aus potenziell sulfatsauren Böden können so aktuell sulfatsaure Böden werden. Das hohe Gefährdungspotenzial ergibt sich durch: • extreme Versauerung (pH < 4,0) des Baggergutes mit der Folge von Pflanzenschäden, • deutlich erhöhte Sulfatkonzentrationen im Bodenwasser bzw. Sickerwasser, • erhöhte Schwermetallverfügbarkeit bzw. -löslichkeit und erhöhte Konzentrationen im Sickerwasser; • hohe Korrosionsgefahr für Beton- und Stahlkonstruktionen. Zur Gefahrenabwehr bzw. -minimierung bedürfen in den betroffenen Gebieten alle Baumaßnahmen mit Bodenaushub oder Grundwasserabsenkungen einer eingehenden fachlichen Planung und Begleitung. Dabei ist zu beachten, dass die Verbreitung der Eisensulfide in der Fläche und in der Tiefe oft eher fleckenhaft ist. Daher sollten die Identifikation von aktuell und potenziell SSM sowie Bauplanung und -begleitung nur durch qualifiziertes bodenkundliches Fachpersonal vorgenommen werden. Aufgrund der oft geringen Tragfähigkeit dieser Böden und insbesondere der Torfe müssen bei Baumaßnahmen relativ große Baugruben ausgehoben werden, so dass in kurzer Zeit viel SSM als Aushubmaterial anfällt. Zudem laufen Oxidation und Versauerung oft sehr schnell ab. Diese Auswertungskarte kann schon bei Planung und Ausweisung von Gebieten, z. B. im Rahmen von Trassenplanungen, Flächennutzungs- und Bebauungsplänen etc., genutzt werden. Konkrete Handlungsanweisungen zu Bauplanung und -begleitung sowie zu Beprobung und Laboranalyse des umzulagernden SSM finden sich in den Geofakten 25. Achtung: Die Karte ist nur die Grundlage für eine konkrete Erkundung am Ort der Baumaßnahme.
Zuletzt aktualisiert: 10.12.2024
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
1131 - 1140 von 2.147.170 Ergebnissen
first_page arrow_left_alt 110 111 112 113
114
115 116 117 118 arrow_right_alt last_page

Räumliche Begrenzung der Suche festlegen

Umweltinformationsportal des Landes Niedersachsen
Logo
©
Niedersächsisches Ministerium für
Umwelt, Energie und Klimaschutz
Über Kontakt Impressum Datenschutz Barrierefreiheit
MVP