Umweltinformationen werden gesucht. Bitte warten...
Filter
filter_list
Filter einstellen
Begrenze die Suche räumlich
search
92.775
Ergebnisse
92.775
Ergebnisse
Anzeigen:
Filter
Ergebnistypen
public
Bericht: "Makrozoobenthos: Leybucht; Fortentwicklung (1984)"
Die vorliegenden Untersuchungen sind Bestandteil des Leybucht-Projektes der Forschungsstelle, in dessen Rahmen auch die hydrologischen Verhältnisse (LIEBIG 1984, NIEMEYER 1984), die Morphologie (STEPHAN 1984) und die Sedimentologie (RAGUTZKI 1984) bearbeitet worden sind. Die Zielsetzung dieser Arbeiten ist, das Bauvorhaben in seinen Auswirkungen auf das Gesamtgebiet der Leybucht und auf ihre künftige Entwicklung zu beurteilen. Schlussbemerkung: Abschließend kann über die Zukunftsaussichten der Leybucht gesagt werden: Die aus der morphologische Analyse (Höhenwachstum) und aus der Vegetationsentwicklung gewonnenen Einsichten sprechen dafür, dass die Verlandung nur noch langsam fortschreitet. Das geplante Bauvorhaben wird den Gang der natürlichen Entwicklung voraussichtlich wenig beeinflussen, da die Halbinsel Leyhörn die jetzigen Strömungs- und Seegangsverhältnisse unberührt lässt. Nach menschlichen Zeitmaß ist der bucht somit noch eine längere Existenz beschieden. Jedoch arbeitet die Zeit allmählich zugunsten der Salzwiesen und auf Kosten der Wattflächen. Diese Entwicklung kann Konsequenzen für die Vogelwelt mit sich bringen, da sie die gegenwärtig wohl besonders günstigen Lageverhältnisse zwischen Brut-, Nahrungs- und Rastbiotopen verändert. Die Wattenfauna der Leybucht ist nicht ungewöhnlich reich an Biomasse, wie mehrfach angenommen. Sie setzt sich aber aus leicht für Vögle verfügbaren und möglicherweise aus besonders produktiven Arten zusammen. Langfristig gesehen, stehen die Zeichen auf Verknappung, da Höhenwachstum und Flächenminderung der Watten die Biomasse reduzieren werden. Der Fortfall der durch die Halbinsel Leyhörn beanspruchten Bereiche verstärkt diese Entwicklung. Um das Flächenverhältnis zwischen Watten und Salzwiesen nicht unnötigerweise und nicht vorzeitig zu verändern, wird empfohlen, die Landgewinnungsarbeiten einzustellen. The bay „Leybucht“, situated in the lower reaches of the Ems estuary, was originally bound for total closure by land reclamation. However, in the course of the last 15 years the view changed because the extraordinary ecological value of the bay was recognized. Its extensive saltmarshes and mud flats form a unique habitat for breeding and migrating waders and waterfowl. Therefore, a total embankment seemed no more acceptable. Instead, a plan was developed to embank about 10 km² of foreland and tidal flats mostly outside of the Leybucht proper, in order to create a water reservoir for hinterland drainage and a new and deep channel for the fishing village Greetsiel. In the present study special aspects of the ecological impact of this coastal engineering project are investigated.
settings
Wasserversorgungskonzept Niedersachsen 1 : 500 000 - Nutzungsdruck für den Betrachtungszeitpunkt 2100 bei mittleren Verhältnissen für Landkreise (WMS Dienst)
Das Wasserversorgungskonzept Niedersachsen dient dem übergeordneten Ziel der langfristigen Sicherstellung der niedersächsischen Wasserversorgung, insbesondere der öffentlichen Wasserversorgung als ein maßgeblicher Baustein der Daseinsvorsorge. Die Wasserversorgung muss entsprechend der aktuellen und regionalen Herausforderungen und unter der Maßgabe einer nachhaltigen Grundwasserbewirtschaftung weiterentwickelt werden. Hierzu ist es sowohl für Politik und Wasserbehörden als auch für die Nutzer der Ressource notwendig, Handlungsbedarfe frühzeitig erkennen zu können, um im Weiteren rechtzeitig notwendige Maßnahmen für eine langfristige Sicherstellung der niedersächsischen Wasserversorgung zu ergreifen. Das Wasserversorgungskonzept Niedersachsen stellt einen hierfür erforderlichen landesweiten Informationsrahmen dar. Als Fachkonzeption dient es Wassernutzern, Zulassungsbehörden und dem Land für die Wasserbewirtschaftung und der Öffentlichkeit als transparente und in die Zukunft gerichtete Informations- und Planungsgrundlage. Vorgaben für Einzelverfahren sind ausdrücklich nicht das Ziel. Im Rahmen des Wasserversorgungskonzeptes erfolgt eine Bilanzierung des derzeitigen Standes (Bezugsjahr 2015) sowie der mittel- und langfristigen Entwicklungen der niedersächsischen Wasserversorgung. Hierbei werden das Grundwasserdargebot für mittlere und trockene Verhältnisse und die Wasserbedarfe der maßgeblichen Grundwassernutzer einander zu verschiedenen Zeitpunkten (2015, 2030, 2050 und 2100) gegenübergestellt. Die Methodik des Wasserversorgungskonzeptes Niedersachsen wurde rasterbasiert durchgeführt. Dafür wurde ein 500 x 500 m Raster erstellt, welches sich über ganz Niedersachsen und Bremen erstreckt. Landesweite Datengrundlagen, die der Planung der aktuellen und zukünftigen Bewirtschaftung des Grundwassers dienen, wurden auf das Raster übertragen. Diese bildeten die Grundlage der durchgeführten Berechnungen, Bewertungen und abschließenden Darstellungen. In der Karte ist der Nutzungsdruck für den Betrachtungszeitpunkt 2100 bei mittleren Verhältnissen für Landkreise dargestellt.
settings
Sedimentbilanzindex (10 m Raster) (WMS Dienst)
Der hier vorliegende Sedimentbilanzindex geht auf das von Möller et al. (2008) beschriebene Ableitungsverfahren zurück und ist eine Weiterentwicklung der von BÖHNER & SELIGE (2006) beschriebenen Methode. Grundlage hierfür ist die Kombination verschiedener Reliefparameter, wobei Parameter des Bodens (Bodenart), der Niederschläge oder der Landbedeckung in der Anwendung unberücksichtigt bleiben. Die Berechnung geht vom Grundgedanken des LS-Faktors des USLE (WISCHMEIER & SMITH (1978)) aus. Die Hangneigung wird über ein Äquivalent des Sedimenttransportindex (STIS) integriert. Die Hanglänge fließt über Exponentenwerte für flache Hänge ein (SCHWERTMANN et al. (1990)). Der Sedimentbilanzindex beschreibt somit ein relatives Potential des Reliefs zum Abtrag (Index -4 bis <1) bzw. zur Akkumulation (Index >1 bis 4,5) von Bodenmaterial. Weiterentwicklungen werden bei MÖLLER et al. (2008) beschrieben. MÖLLER, M., VOLK, M., FRIEDRICH, K. & LYMBURNER, L. (2008): Placing soil-genesis and transport processes into a landscape context: A multiscale terrain-analysis approach. Journal of Plant Nutrition and Soil Science 171 (3), 419-430. BOEHNER, J. & SELIGE, T. (2006): Spatial Prediction of Soil Attributes Using Terrain Analysis and Climate Regionalisation. In: Boehner, J., McCloy, K.R., Strobl, J.: SAGA - Analysis and Modelling Applications, Goettinger Geographische Abhandlungen, Vol.115, p.13-27. SCHWERTMANN, U., VOGL, W. & KAINZ, M. (1990): Bodenabtrag durch Wasser – Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen. – 2. Aufl.: Stuttgart, 64 pp. WISCHMEIER, W.H. & SMITH, D.D. (1978): Predicting rainfall erosion losses – A guide to conversation planning. – Agriculture Handbook No. 537: US Department of Agriculture, Washington DC.
Die Karte zeigt eine Auswertung von Satellitenbildern aus dem Jahr 2005 der CORINE-Landbedeckungseinheiten (Ebene 1 für alle Klassen und Ebene 2 für bebaute Flächen). Auswertung von Satellitenbildern aus dem Jahr 2005 hinsichtlich der CORINE-Landbedeckungseinheiten (Ebene 1 für alle Klassen und Ebene 2 für bebaute Flächen): - 11000 Städtisch geprägte Flächen - 12000 Industrie-, Gewerbe- und Verkehrsflächen - 13000 Abbauflächen, Deponien und Baustellen - 14000 Künstl. angelegte, nicht landwirtschaftl. genutzte Grünflächen - 20000 Landwirtschaftliche Flächen - 30000 Wälder und naturnahe Flächen - 40000 Feuchtflächen - 50000 Wasserflächen Die Validierung der Daten erfolgte mittels hochauflösender Orthofotos (punktbasierte Stichprobe: für jeden Punkt einer Stichprobe wird das Kartierungsergebnis mit der realen Landnutzung aus dem Orthofoto verglichen). Die Pixelauflösung beträgt 10 m. In der Klasse „Industrie-, Gewerbe- und Verkehrsflächen“ werden Straßen erst ab einer Breite von 40 m kartiert. Die Positionsgenauigkeit der Satellitendaten liegen entsprechend der Produktspezifikationen bei +/-1 Pixel (d.h. +/-10 m). Die Datengenauigkeit wird mit ca. 90% angegeben. Auswertung: GeoVille Group, Innsbruck; Infoterra GmbH, Friedrichshafen (erstellt im Rahmen des Projektes ESA GSE Stage 2 GSE Land, gefördert durch die Europäische Raumfahrtagentur ESA)
Diese digitale Karte gibt einen Überblick über avifaunistisch wertvolle Bereiche für Brutvögel in Niedersachsen. Als Avifauna wird die Gesamtheit aller in einer Region vorkommenden Vogelarten bezeichnet. Die der Fachbehörde für Naturschutz vorliegenden avifaunistischen Daten werden gebietsbezogen bewertet. Diese Bewertung erfolgt getrennt für Brut- und Gastvögel nach standardisierten Bewertungsverfahren. Es erfolgte die Bewertung von Daten aus dem Zeitraum 1993 bis 2005 (bzw. 2006) an Hand des in Niedersachsen angewendeten Bewertungssystems für Brutvogellebensräume (Informationsdienst 6/97) auf der Grundlage der Roten Liste der in Niedersachsen und Bremen gefährdeten Brutvögel 6. Fassung, Stand 2002 (Infodienst 5/2002). Aus den im Rahmen des niedersächsischen Vogelarten - Erfassungsprogramms gemeldeten Daten wurden für die Bewertung eines Gebietes die aktuellsten Daten aus einem Zeitabschnitt von 5 Jahren (je nach Datenlage und Bearbeitungsstand) zur Bewertung herangezogen. Im Rahmen des niedersächsischen Vogelarten-Erfassungsprogramms werden keine landesweit flächendeckenden regelmäßigen Kartierungen durchgeführt, sondern es handelt sich um eine Datensammlung von ehrenamtlichen und z. T. beauftragten Bestandserfassungen. Für nicht abgegrenzte Bereiche liegen keine oder nicht ausreichende Brutvogel- Bestandszahlen vor, so dass keine Einstufung erfolgen konnte. Dies bedeutet jedoch nicht, dass diese Bereiche ohne Bedeutung für die Brutvogelfauna sind! Für Gebiete mit dem Attribut „Status offen“ liegen ebenso keine oder nicht ausreichende Bestandszahlen vor, so dass keine Einstufung erfolgen konnte. Dies besagt aber auch in diesem Fall nicht, dass die Bereiche keine avifaunistische Bedeutung haben. Die Europäischen Vogelschutzgebiete erhalten bei der Bewertung der Brutvögel einen gesonderten Wert (EU-VSG).
public
Kohlenstoffreiche Böden in Niedersachsen 1: 5 000 nach Bodenschätzung
Die kohlenstoffreichen Böden in Niedersachsen 1 : 5 000 nach Bodenschätzung, „BS Standortinformation Moor und Torf“, ist das Ergebnis einer Methodenanwendung zur standardisierten Auswertung der Bodenschätzung (1:5.000), mit der Moore und weitere Böden mit Torfen aus den Daten selektiert und hinsichtlich ihrer Standortinformation ausgewertet und in Kategorien dargestellt werden. Es ergibt sich eine hochauflösende Darstellung der Verbreitung von Standortklassen wie Moorgleyen und Mooren sowie Böden mit mineralisch überdeckten Torfen. Sofern kulturtechnische Maßnahmen durch die Bodenschätzung erfasst wurden, werden auch kultivierte Moore (Sanddeckkultur, Sandmischkulturen, Baggerkuhlungen) abgebildet. Weiterführende Informationen zur Ableitung der Standortklasse finden sich im GeoBericht 33. Die Ausschärfung der Auswertung hinsichtlich kultivierter Moore, insbesondere Moor-Treposole ist in Anlehnung an GeoBericht 47 erfolgt. Die Bodenschätzung geht auf das „Gesetz zur Schätzung des landwirtschaftlichen Kulturbodens (BodSchätzG)“ vom 16.10.1934 zurück und wird bis heute in nahezu unveränderter Form (novellierte Fassung vom 01.01.2008) durchgeführt. Nach Abschluss der Erstinventur in den 50er Jahren wird die Bodenschätzung seither fortlaufend durch Nachschätzungen aktualisiert. Ein großer Teil der heute vorliegenden Bodenschätzungsinformationen ist daher nicht aktuell. Dies ist insbesondere für Moorböden, die bei Entwässerung einen Torfverlust durch Mineralisierung aufweisen oder bei agrarkulturellen Eingriffen wie den Tiefumbruch von Bedeutung. Das hier dargestellte Auswertungsergebnis bezieht sich auf den Datenbestand der Bodenschätzung von 2018. Sobald dem LBEG ein neuer Datenbestand zugeführt und in das NIBIS® integriert wird, kann die automatisierte Auswertung auf Grundlage des neuen Datensatzes erneut durchgeführt und die Darstellung aktualisiert werden.
public
GEMAS – Geochemische Kartierung der Acker- und Grünlandböden Europas, Einzelelementkarten, C - Kohlenstoff
GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soil in Europe) ist ein Kooperationsprojekt zwischen der Expertengruppe „Geochemie“ der europäischen geologischen Dienste (EuroGeoSurveys) und Eurometeaux (Verbund der europäischen Metallindustrie). Insgesamt waren an der Durchführung des Projektes weltweit über 60 internationale Organisationen und Institutionen beteiligt. In den Jahren 2008 und 2009 wurden in 33 europäischen Ländern auf einer Fläche von 5 600 000 km² insgesamt 2219 Ackerproben (Ackerlandböden, 0 – 20 cm, Ap-Proben) und 2127 Grünlandproben (Weidelandböden, 0 – 10 cm, Gr-Proben) entnommen. In den Proben wurden 52 Elemente im Königswasseraufschluss, 41 Elemente als Gesamtgehalte sowie TC und TOC bestimmt. Ergänzend wurde in den Ap-Proben zusätzlich 57 Elemente in der mobilen Metallionenfraktion (MMI®) sowie die Bleiisotopenverhältnisse untersucht. Alle analytischen Untersuchungen unterlagen einer strengen externen Qualitätssicherung. Damit liegt erstmals ein qualitätsgesicherter und harmonisierter geochemischer Datensatz für die europäischen Landwirtschaftsböden mit einer Belegungsdichte von einer Probe pro 2 500 km² vor, der eine Darstellung der Elementgehalte und deren Bioverfügbarkeit im kontinentalen (europäischen) Maßstab ermöglicht. Die Downloaddateien zeigen die flächenhafte Verteilung der mit verschiedenen Analysenmetoden bestimmten Elementgehalte in Form von farbigen Isoflächenkarten mit jeweils 7 und 72 Klassen.
public
GEMAS – Geochemische Kartierung der Acker- und Grünlandböden Europas, Einzelelementkarten, S - Schwefel
GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soil in Europe) ist ein Kooperationsprojekt zwischen der Expertengruppe „Geochemie“ der europäischen geologischen Dienste (EuroGeoSurveys) und Eurometeaux (Verbund der europäischen Metallindustrie). Insgesamt waren an der Durchführung des Projektes weltweit über 60 internationale Organisationen und Institutionen beteiligt. In den Jahren 2008 und 2009 wurden in 33 europäischen Ländern auf einer Fläche von 5 600 000 km² insgesamt 2219 Ackerproben (Ackerlandböden, 0 – 20 cm, Ap-Proben) und 2127 Grünlandproben (Weidelandböden, 0 – 10 cm, Gr-Proben) entnommen. In den Proben wurden 52 Elemente im Königswasseraufschluss, 41 Elemente als Gesamtgehalte sowie TC und TOC bestimmt. Ergänzend wurde in den Ap-Proben zusätzlich 57 Elemente in der mobilen Metallionenfraktion (MMI®) sowie die Bleiisotopenverhältnisse untersucht. Alle analytischen Untersuchungen unterlagen einer strengen externen Qualitätssicherung. Damit liegt erstmals ein qualitätsgesicherter und harmonisierter geochemischer Datensatz für die europäischen Landwirtschaftsböden mit einer Belegungsdichte von einer Probe pro 2 500 km² vor, der eine Darstellung der Elementgehalte und deren Bioverfügbarkeit im kontinentalen (europäischen) Maßstab ermöglicht. Die Downloaddateien zeigen die flächenhafte Verteilung der mit verschiedenen Analysenmetoden bestimmten Elementgehalte in Form von farbigen Isoflächenkarten mit jeweils 7 und 72 Klassen.
public
Geotechnische Klassifizierung der Sedimente in Anlehnung an DIN 18311 (2010) - Nassbaggerarbeiten
Bohrdatenauswertung 0-1m GOK
Die Karte Sedimentklassen für Nassbaggerarbeiten stellt im Maßstab 1 : 250.000 Informationen zur Verbreitung von Sedimenten gleicher Beschaffenheit an der Meeresbodenoberfläche bis in eine Teufe von 0,2 m sowie für die Teufenbereiche 0-1 m und 0-2 m in Anlehnung an DIN 18311 (2010) – Nassbaggerarbeiten in 7 Klassen dar (siehe Legende). Grundlage der Kartendarstellung sind Sedimentproben von der Meeresbodenoberfläche bis zu einer Teufe von 0,2 m sowie Schichtbeschreibungen von Bohrungen in 0,2 m Teufe sowie in den oben genannten Teufenbereichen, die bis Januar 2013 im deutschen Nordseeraum zur Verfügung standen. Diese Grundlagendaten sind in Datenbanken beim BSH und LBEG abgelegt, zukünftig erhobene Daten werden darin integriert. Nassbaggerarbeiten sind erforderlich, wenn z.B. in Gewässern durch Sedimentumlagerung entstandene Untiefen in Schifffahrtsstraßen zu beseitigen sind, Material für Küstenschutzmaßnahmen oder Bauzwecke aus dem Meer entnommen werden muss sowie bei der Pipeline- oder Kabelverlegung im Meeresboden. Eine Grundlage für die Beauftragung und Umsetzung der entsprechenden Arbeiten ist die “DIN 18311 - Allgemeine Technische Vorschriften für Bauleistungen – Nassbaggerarbeiten“. Diese klassifiziert die anzutreffenden Bodenarten entsprechend ihrer Beschaffenheit in 10 Klassen, die die Grundlage für die Auswertung der Sedimentdaten am Meeresboden der Nordsee sind.
settings
Explorationsrelevante Sandsteine der Bückeberg-Gruppe in Niedersachsen 1 : 500 000 - Sandsteinmächtigkeit (WMS Dienst)
Die Übersichtskarte zeigt die Verbreitung der Bückeberg-Gruppe (Unterkreide, Ober-Berriasium) im Niedersächsischen Becken und stellt insbesondere explorationsrelevante Sandsteine und deren Eigenschaften dar. Als explorationsrelevant werden hier regional zusammenhängende Sandsteine mit einer Mächtigkeit von mindestens fünf Metern bezeichnet. Für diese Einheiten kann ein Potenzial als geothermisch nutzbare Aquifere vermutet werden, das jedoch standortbezogen im Einzelfall nachzuweisen ist. Die hier verwendete Untergliederung in die „obere“, „mittlere“ und “untere“ Bückeberg-Gruppe für die kartierten Einheiten ist informell und als relativ anzusehen. Explorationsrelevante Sandsteine des Berriasium sind vorwiegend im östlichen Teil des Niedersächsischen Beckens zu finden (Kopf-Sandstein der Fuhse-Formation, Sandsteine der Barsinghausen-Subformation und Sandsteine der Deister- und Fuhse-Formation) sowie vereinzelt im Raum Osnabrück (Sandsteine der Oesede-Formation). Die Sandsteine sind in der Regel in eine Wechselfolge aus Tonstein, Siltstein und lokal geringmächtigen Kohlelagen eingebettet. Tonsteine, Siltsteine, Tonmergelsteine, Schillkalksteine und lokal geringmächtige Sandsteine der Isterberg-Formation werden zusammengefasst dargestellt. Porosität, Permeabilität und Transmissibilität der Lithologien wurden bei der Kartierung nicht berücksichtigt, sind jedoch – soweit verfügbar – als bohrungsbezogene Parameter angegeben. Die Abgrenzung der kartierten Einheiten beruht auf vorhandener Literatur und der Bewertung und Interpretation ausgewählter geowissenschaftlicher Daten, die am Landesamt für Bergbau, Energie und Geologie (LBEG) vorliegen. Grundlage bildet der Paläogeographische Atlas der Unterkreide von Nordwestdeutschland (Schott; 1969), in dem die Verbreitung sowie die Lithologie der Unterkreide im Niedersächsischen Becken dargestellt sind sowie der Geotektonische Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor (Baldschuhn et al. 2001) und die Geologische Karte von Niedersachsen 1: 50 000 (GK50). Die von Schott (1969) kartierte Verbreitungsgrenze des "Wealden" (entspricht weitgehend der Bückeberg-Gruppe) sowie die durch die Beckeninversion erodierten Bereiche wurden in die vorliegende Karte übernommen und stellenweise nach neueren Informationen modifiziert. Die dargestellten Salzstrukturen stammen aus der Karte der Salzstrukturen Norddeutschlands 1: 500 000 (BGR 2008). Innerhalb der Verbreitungsgrenze der Bückeberg-Gruppe wurden basierend auf den Informationen der Kohlenwasserstoff-Bohrungsdatenbank des LBEG Tiefbohrungen mit geeigneter Datenlage für die Kartierung ausgewählt. Die Abgrenzung der kartierten Einheiten beruht auf der Bewertung und Interpretation der stratigraphischen und lithologischen Informationen aus Schichtenverzeichnissen, geophysikalischen Bohrlochmessungen und Bohrkernmaterial. Großräumige Verzahnungs- bzw. Übergangsbereiche zwischen zwei Kartiereinheiten werden als schräg schraffierte Flächen dargestellt. Die Überlagerung von zwei Sandsteineinheiten ist als vertikal schraffierte Fläche abgebildet. Gebiete, in denen keine, oder nur unzureichende Informationen aus Tiefbohrungen vorliegen oder ausgewertet wurden, sind in der Verbreitungskarte als „Gebiete mit unzureichender Kenntnis der Lithologie oder nicht kartiert“ ausgewiesen. Die Bereiche der Salzstockflanken und Salzstock-Randsenken wurden nicht näher untersucht. Lokale Änderungen der Mächtigkeit, Lithofazies und Gesteinseigenschaften in diesen Bereichen bleiben daher unberücksichtigt. Die verwendeten Bohrungen sind als Belegpunkte aufgeführt. Die ausgewerteten Daten der Tiefbohrungen werden als Werteklassen angezeigt. Die Tiefenlage und die Gesamtmächtigkeit basiert auf der Auswertung der Schichtenverzeichnisse. Angaben zur Mächtigkeit der Sandsteine stammen aus der Auswertung von Bohrlochmessungen sowie aus den Schichtverzeichnissen und beziehen sich auf die jeweils mächtigste Sandsteinlage einer ausgewerteten Bohrung. Porosität und Permeabilität der Sandsteine wurden aus den Informationen der Kohlenwasserstoff-Datenbank aus Bohrkerndaten und, falls vorhanden, aus Bohrlochmessungen berechnet. Die Angaben der Porositäten aus Bohrkerndaten sind als effektive Porositäten (%) und aus Bohrlochmessungen als Gesamtporosität (%) zu verstehen. Die Werteklassen der Permeabilität sind jeweils in Millidarcy (mD) und in Quadratmeter (m²) angegeben. In den Karten sind die unterschiedlichen Datengrundlagen durch Symbole gekennzeichnet. Die Transmissibilität der Sandsteine ergibt sich aus deren Mächtigkeit und der jeweiligen Permeabilität und ist entsprechend der Berechnungsgrundlage in unterschiedlichen Symbolen in den Einheiten Darcymeter (Dm) und Kubikmeter (m³) dargestellt.