Umweltinformationen werden gesucht. Bitte warten...
Filter
filter_list
Filter einstellen
Begrenze die Suche räumlich
search
2.146.138
Ergebnisse
2.146.138
Ergebnisse
Anzeigen:
settings
Hintergrundwerte von anorganischen Stoffen in Böden in Deutschland 1:1.000.000 (WMS)
Web Map Service (WMS) zur Karte der Hintergrundwerte von anorganischen Stoffen in Böden in Deutschland. Durch die LABO wurden 2017 für 16 Elemente neue, bundesweite Hintergrundwerte veröffentlicht. Sie beruhen auf Profilinformationen und Messdaten von Königswasserauszügen, die durch die BGR zusammengeführt und homogenisiert wurden. Daten mit hohen Bestimmungsgrenzen wurden nach bestimmten Kriterien von der weiteren Auswertung ausgeschlossen, damit die Bestimmungsgrenzen nicht die Hintergrundwerte beeinflussen. Um die Hintergrundwerte nicht durch Regionen mit hoher Stichprobendichte überproportional beeinflussen zu lassen, wurde in Teilen eine räumliche Ausdünnung durchgeführt. Die Werte mehrerer Horizonte eines Standortes wurden durch tiefengewichtete Mittelwerte zu einem Wert zusammengezogen. Zur Auswertung wurden die vorhandenen Messwerte verschiedenen Gruppen von Bodenausgangsgesteinen zugeordnet. Zudem wurde unterschieden, ob die Proben im Oberboden, im Unterboden oder im Untergrund genommen wurden. Bei den Oberböden wurde bei der Auswertung auch die unterschiedliche Nutzung (Acker, Grünland, Forst) berücksichtigt. Lockergesteine wurden aufgrund ihrer unterschiedlichen Zusammensetzung getrennt nach Nord- und Süddeutschland ausgewertet. Durch die Aufteilung der Daten in Teilkollektive wurden nicht in allen Fällen verlässliche Fallzahlen erreicht, sodass nur Hintergrundwerte mit Fallzahlen ?20 dargestellt werden. Das genaue Vorgehen bei der Ableitung ist dem Bericht der LABO-Bund/Länder-Arbeitsgemeinschaft Bodenschutz (2017): 'Hintergrundwerte für anorganische und organische Stoffe in Böden', 4. überarbeitete und ergänzte Auflage, zu entnehmen.
public
Bericht: "Fischfauna: Bewertungswerkzeug WRRL – Übergangs- / Küstengewässer (2006)"
„Die EU-Wasserrahmen-Richtlinie schafft einen Ordnungsrahmen für den Schutz der Binnenoberflächengewässer, der Übergangsgewässer, der Küstengewässer und des Grundwassers. Für oberirdische Gewässer gelten die folgenden Ziele: Verwirklichung des guten ökologischen und chemischen Zustandes bis 2015; Verwirklichung des guten ökologischen Potenzials und des guten chemischen Zustands bei erheblich veränderten oder künstlichen Gewässern bis 2015; Verschlechterungsverbot; Bei künstlichen und erheblich veränderten Oberflächengewässern kann nach sorgfältiger Prüfung der Verbesserungsmöglichkeiten die Ausweisung als erheblich verändertes Gewässer erfolgen. Bei diesen Gewässern, bzw. bei Gewässerabschnitten, bei denen der gute ökologische Zustand nicht oder nicht mit verhältnismäßigen Mitteln wieder hergestellt werden kann und wenn durch die Wiederherstellung bestimmte Nutzungen, wie Wasserkraft, Schifffahrt, Hochwasserschutz entscheidend beeinträchtigt würden, muss nicht der gute ökologische Zustand erreicht werden, sondern das gute ökologische Potenzial. Die Richtlinie definiert den ‚guten ökologischen Zustand’ als ein Ziel, das bis 2015 (in Ausnahmen auch bis 2027) erreicht sein soll. Vor diesem Hintergrund ist es zunächst notwendig, den aktuellen Zustand der Gewässer zu beurteilen und damit den erforderlichen Handlungsbedarf im Hinblick auf das Ziel der WRRL aufzuzeigen. Um diesen ersten Schritt durchführen zu können, ist die Entwicklung geeigneter Bewertungsverfahren für die von der WRRL vorgegebenen Qualitätskomponenten erforderlich. Vor diesem Hintergrund hat die vorliegende Arbeit die Aufgabe für den Gewässertyp ‚Übergangsgewässer- Nordsee’ (Typ T1/T2) ein fischbasiertes Bewertungswerkzeug zu entwickeln, das den spezifischen Anforderungen der WRRL Rechnung trägt. Der Gewässertyp „Übergangsgewässer- Nordsee“ ist durch den ästuarinen Salinitätsgradienten charakterisiert und zeichnet sich durch das dynamische Zusammentreffen limnischer und mariner Elemente aus. Er bildet daher einen Lebensraum ganz eigener Prägung, der auch eine spezifische Fischfauna aufweist. Diese eigene Ausprägung machte im Hinblick auf die Qualitätskomponente Fischfauna einen spezifischen Bewertungsansatz für die Übergangsgewässer erforderlich. Dazu ist in der vorliegenden Arbeit ein multimetrisches Bewertungsverfahren konzipiert worden, das die Aspekte Artenspektrum, Abundanz und Altersstruktur der Fischfauna umfasst und dabei auf eine historische Referenzzönose als Bewertungsmaßstab Bezug nimmt. Mit der Erarbeitung eines entsprechenden fischbasierten Bewertungswerkzeuges wurde das Büro BioConsult Schuchardt & Scholle GbR im Dezember 2004 von den Ländern Schleswig-Holstein und Niedersachsen beauftragt. Die Koordination des Projektes oblag dabei der Wassergütestelle Elbe und wurde von einer Fachgruppe aus Vertretern der Länder Schleswig-Holstein, Niedersachsen und Hamburg begleitet. […]“
public
Moore mit besonderer Bedeutung für Brutvögel (wertvolle Bereiche 2010, ergänzt 2013)
Der Datenbestand gibt einen Überblick über die für Brutvögel wertvollen Bereiche auf kohlenstoffreichen Böden (BHK50) und zusätzlichen, außerhalb dieser Böden identifizierten Moorbiotopen in Niedersachsen.Die Bewertung erfolgt auf Grundlage der Roten Liste der in Niedersachsen gefährdeten Brutvögel anhand der Bewertungsstufen "lokale" bis "nationale Bedeutung" (vgl. Informationsdienst Naturschutz Niedersachsen 2/2013). Aus den im Rahmen des niedersächsischen Vogelarten-Erfassungsprogramms gemeldeten Daten wurden für die Bewertung eines Gebietes die aktuellsten Daten aus einem Zeitabschnitt von 5 Jahren (je nach Datenlage und Bearbeitungsstand) zur Bewertung herangezogen. Bei den über das niedersächsischen Vogelarten-Erfassungsprogramm gemeldeten avifaunistischen Daten handelt es sich jedoch nicht um systematisch flächendeckend erhobene Daten, sondern um ehrenamtliche und z. T. beauftragten Bestandserfassungen. Für nicht abgegrenzte Bereiche liegen keine oder nicht ausreichende Brutvogel-Bestandszahlen vor, so dass keine Einstufung erfolgen konnte. Dies bedeutet jedoch nicht, dass diese Bereiche ohne Bedeutung für die Brutvogelfauna sind! Für Gebiete mit dem Attribut „Status offen“ liegen ebenso keine oder nicht ausreichende Bestandszahlen vor, so dass keine Einstufung erfolgen konnte. Dies besagt aber auch in diesem Fall nicht, dass die Bereiche keine avifaunistische Bedeutung haben.Die Europäischen Vogelschutzgebiete erhalten bei der Bewertung der Brutvögel einen gesonderten Wert (EU-VSG). Für ausgewählte Arten erfolgte eine Sonderbewertung entsprechend des aktualisierten Bewertungsverfahrens. Gebiete mit dem Hinweis „siehe Bewertung 2006“ wurden in der Bewertung 2010 mit „Status offen“ klassifiziert, da i. d. R. seit 2005 keine Daten vorlagen.
settings
INSPIRE: Information system salt: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) - double saline and flat salt layers (InSpEE-DS)
Which salt formations are suitable for storing hydrogen or compressed air? In the InSpEE-DS research project, scientists developed requirements and criteria for the assessment of suitable sites even if their exploration is still at an early stage and there is little knowledge of the salinaries’ structures. Scientists at DEEP.KBB GmbH in Hanover, worked together with their project partners at BGR and the Leibniz University Hanover, Institute for Geotechnics, to develop the planning basis for the site selection and for the construction of storage caverns in flat layered salt and multiple or double saliniferous formations. Such caverns could store renewable energy in the form of hydrogen or compressed air. While the previous project InSpEE was limited to salt formations of great thickness in Northern Germany, salt horizons of different ages have now been examined all over Germany. To estimate the potential, depth contour maps of the top and the base as well as thickness maps of the respective stratigraphic units were developed. Due to the present INSPIRE geological data model, it was necessary, in contrast to the original dataset, to classify the boundary lines of the potential storage areas in the Zechstein base and thickness layers, whereby the classification of these lines was taken from the top Zechstein layer. Consequently, the boundary element Depth criterion 2000 m (Teufe-Kriterium 2000 m) corresponds on each level to the 2000 m depth of Top Zechstein. However, the boundary of national borders and the boundary of the data basis could not be implemented in the data model and are therefore not included in the dataset. Information on compressed air and hydrogen storage potential is given for the identified areas and for the individual federal states. According to the Data Specification on Geology (D2.8.II.4_v3.0) the content of InSpEE-DS (INSPIRE) is stored in 18 INSPIRE-compliant GML files: InSpEE_DS_GeologicUnit_Isopachs_Zechstein.gml contains the Zechstein isopachs. InSpEE_DS_GeologicUnit_Isobaths_Top_Zechstein.gml and InSpEE_DS_GeologicUnit_Isobaths_Basis_Zechstein.gml contain the isobaths of the top and basis of Zechstein. The three files InSpEE_DS_GeologicStructure_ThicknessMap_Zechstein, InSpEE_DS_GeologicStructure_Top_Zechstein and InSpEE_DS_GeologicStructure_Basis_Zechstein represent the faults of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Boundary_element_Potential_areas_Zechstein.gml contains the boundary elments of the potential areas at the top and the basis of Zechstein as well as of the Zechstein body. The three files InSpEE_DS_GeologicUnit_Uncertainty_areas_ThicknessMap_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Top_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Basis_Zechstein.gml represent the uncertainty areas of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Potentially_usable_storage_areas_Storage_potential_in_the_federal_states.gml comprises the areas with storage potential for renewable energy in the form of hydrogen and compressed air. The six files InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Malm.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Keuper.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Muschelkalk.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Roet.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Zechstein.gml and InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Rotliegend.gml represent the salt distribution of the respective stratigraphic unit. InSpEE_DS_GeologicUnit_General_salt_distribution.gml represents the general salt distribution in Germany. This geographic information is product of a BMWi-funded research project "InSpEE-DS" running from the year 2015 to 2019. The acronym stands for "Information system salt: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) - double saline and flat salt layers".
Die Karte zeigt die mittlere monatliche Grundwasserneubildung für den Monat November im 30-jährigen Zeitraum 1971-2000. Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche gemessene und anschließend räumlich interpolierte Klimabeobachtungsdaten des Deutschen Wetterdienstes genutzt. Diese sind die potenzielle Verdunstung, die auf Grundlage der FAO-Grasreferenzverdunstung berechnet wurde (DWD, unveröffentlicht) und der Niederschlag basierend auf dem REGNIE-Produkt (Rauthe et al, 2013), welche nach Richter korrigiert wurden (Richter, 1995). Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 100 x 100 m Raster für mGROWA22 herunterskaliert.
public
Explorationsrelevante Sandsteine der Bückeberg-Gruppe in Niedersachsen 1 : 500 000 - Gesamtmächtigkeit
Die Übersichtskarte zeigt die Verbreitung der Bückeberg-Gruppe (Unterkreide, Ober-Berriasium) im Niedersächsischen Becken und stellt insbesondere explorationsrelevante Sandsteine und deren Eigenschaften dar. Als explorationsrelevant werden hier regional zusammenhängende Sandsteine mit einer Mächtigkeit von mindestens fünf Metern bezeichnet. Für diese Einheiten kann ein Potenzial als geothermisch nutzbare Aquifere vermutet werden, das jedoch standortbezogen im Einzelfall nachzuweisen ist. Die hier verwendete Untergliederung in die „obere“, „mittlere“ und “untere“ Bückeberg-Gruppe für die kartierten Einheiten ist informell und als relativ anzusehen. Explorationsrelevante Sandsteine des Berriasium sind vorwiegend im östlichen Teil des Niedersächsischen Beckens zu finden (Kopf-Sandstein der Fuhse-Formation, Sandsteine der Barsinghausen-Subformation und Sandsteine der Deister- und Fuhse-Formation) sowie vereinzelt im Raum Osnabrück (Sandsteine der Oesede-Formation). Die Sandsteine sind in der Regel in eine Wechselfolge aus Tonstein, Siltstein und lokal geringmächtigen Kohlelagen eingebettet. Tonsteine, Siltsteine, Tonmergelsteine, Schillkalksteine und lokal geringmächtige Sandsteine der Isterberg-Formation werden zusammengefasst dargestellt. Porosität, Permeabilität und Transmissibilität der Lithologien wurden bei der Kartierung nicht berücksichtigt, sind jedoch – soweit verfügbar – als bohrungsbezogene Parameter angegeben. Die Abgrenzung der kartierten Einheiten beruht auf vorhandener Literatur und der Bewertung und Interpretation ausgewählter geowissenschaftlicher Daten, die am Landesamt für Bergbau, Energie und Geologie (LBEG) vorliegen. Grundlage bildet der Paläogeographische Atlas der Unterkreide von Nordwestdeutschland (Schott; 1969), in dem die Verbreitung sowie die Lithologie der Unterkreide im Niedersächsischen Becken dargestellt sind sowie der Geotektonische Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor (Baldschuhn et al. 2001) und die Geologische Karte von Niedersachsen 1: 50 000 (GK50). Die von Schott (1969) kartierte Verbreitungsgrenze des "Wealden" (entspricht weitgehend der Bückeberg-Gruppe) sowie die durch die Beckeninversion erodierten Bereiche wurden in die vorliegende Karte übernommen und stellenweise nach neueren Informationen modifiziert. Die dargestellten Salzstrukturen stammen aus der Karte der Salzstrukturen Norddeutschlands 1: 500 000 (BGR 2008). Innerhalb der Verbreitungsgrenze der Bückeberg-Gruppe wurden basierend auf den Informationen der Kohlenwasserstoff-Bohrungsdatenbank des LBEG Tiefbohrungen mit geeigneter Datenlage für die Kartierung ausgewählt. Die Abgrenzung der kartierten Einheiten beruht auf der Bewertung und Interpretation der stratigraphischen und lithologischen Informationen aus Schichtenverzeichnissen, geophysikalischen Bohrlochmessungen und Bohrkernmaterial. Großräumige Verzahnungs- bzw. Übergangsbereiche zwischen zwei Kartiereinheiten werden als schräg schraffierte Flächen dargestellt. Die Überlagerung von zwei Sandsteineinheiten ist als vertikal schraffierte Fläche abgebildet. Gebiete, in denen keine, oder nur unzureichende Informationen aus Tiefbohrungen vorliegen oder ausgewertet wurden, sind in der Verbreitungskarte als „Gebiete mit unzureichender Kenntnis der Lithologie oder nicht kartiert“ ausgewiesen. Die Bereiche der Salzstockflanken und Salzstock-Randsenken wurden nicht näher untersucht. Lokale Änderungen der Mächtigkeit, Lithofazies und Gesteinseigenschaften in diesen Bereichen bleiben daher unberücksichtigt. Die verwendeten Bohrungen sind als Belegpunkte aufgeführt. Die ausgewerteten Daten der Tiefbohrungen werden als Werteklassen angezeigt. Die Tiefenlage und die Gesamtmächtigkeit basiert auf der Auswertung der Schichtenverzeichnisse. Angaben zur Mächtigkeit der Sandsteine stammen aus der Auswertung von Bohrlochmessungen sowie aus den Schichtverzeichnissen und beziehen sich auf die jeweils mächtigste Sandsteinlage einer ausgewerteten Bohrung. Porosität und Permeabilität der Sandsteine wurden aus den Informationen der Kohlenwasserstoff-Datenbank aus Bohrkerndaten und, falls vorhanden, aus Bohrlochmessungen berechnet. Die Angaben der Porositäten aus Bohrkerndaten sind als effektive Porositäten (%) und aus Bohrlochmessungen als Gesamtporosität (%) zu verstehen. Die Werteklassen der Permeabilität sind jeweils in Millidarcy (mD) und in Quadratmeter (m²) angegeben. In den Karten sind die unterschiedlichen Datengrundlagen durch Symbole gekennzeichnet. Die Transmissibilität der Sandsteine ergibt sich aus deren Mächtigkeit und der jeweiligen Permeabilität und ist entsprechend der Berechnungsgrundlage in unterschiedlichen Symbolen in den Einheiten Darcymeter (Dm) und Kubikmeter (m³) dargestellt.
public
Regionales Raumordnungsprogramm für den Großraum Braunschweig 2008 - Abfallwirtschaft / Altlasten - Vorranggebiet Sicherung / Sanierung von Altlasten
Dieser Datensatz beinhaltet die Vorranggebiete "Sicherung / Sanierung von Altlasten" entsprechend der zeichnerischen Darstellung des Regionalen Raumordnungsprogramms für den Großraum Braunschweig in der Fassung von 2008. Die Satzung über die Festlegung des Regionalen Raumordnungsprogramms für den Großraum Braunschweig 2008 wurde am 20.12.2007 von der Verbandsversammlung des Zweckverbands Großraum Braunschweig beschlossen. Gemäß § 8 Abs. 6 des Niedersächsischen Gesetzes über Raumordnung und Landesplanung (NROG) in der Fassung vom 07. Juni 2007 (Nds. GVBl. S. 223) hat das Niedersächsische Ministerium für Ernährung, Landwirtschaft, Verbraucherschutz und Landesentwicklung - Regierungsvertretung Braunschweig - als oberste Landesplanungsbehörde das Regionale Raumordnungsprogramm 2008 für den Großraum Braunschweig mit Erlass vom 30. April 2008 - Az.: RV BS 1.4-20303/ZGB2008 genehmigt. Das Regionale Raumordnungsprogramm 2008 für den Großraum Braunschweig tritt am 01. Juni 2008 in Kraft. Im Regionalen Raumordnungsprogramm 2008 ist die angestrebte räumliche und strukturelle Entwicklung des Großraums Braunschweig festgelegt. Zum Verbandsgebiet des Großraums Braunschweig gehören die kreisfreien Städte Braunschweig, Salzgitter und Wolfsburg sowie die Landkreise Gifhorn, Goslar, Helmstedt, Peine und Wolfenbüttel.
public
Gefahrenhinweiskarte Niedersachsen 1 : 50 000 - Setzungs- und Hebungsempfindlicher Baugrund
Die Gefahrenhinweiskarte Niedersachsen 1 : 50 000 - Setzungs- und Hebungsempfindlicher Baugrund (ISHB50) ) ist aus der Geologischen Karte 1 : 50 000 (GK50) und der Ingenieurgeologischen Karte 1 : 50 000 (IGK50) abgeleitet, langjährige regionale Erfahrungen sowie bodenmechanische Analytik sind bei der Erstellung der Karte berücksichtigt. Die Karte zeigt die räumliche Verbreitung der verschiedenen setzungs- und hebungsempfindlichen Baugrundtypen bis in 2 m Tiefe. Darunter liegende Schichten lassen sich aus der GK50 und der IGK50 nicht ableiten. Hierfür kann die Bohrdatenbank des LBEG weitere Informationen und Daten liefern. Mit Hilfe von Kriterien und Regeln wird die Beschaffenheit, Zusammensetzung, Entstehung der geologischen Einheit sowie deren bodenmechanische Steifigkeit, Festigkeit und Wasserempfindlichkeit als Baugrund im Hinblick auf die Setzungs- und Hebungsempfindlichkeit bewertet. Geologische Einheiten mit ähnlichen Eigenschaften werden zusammengefasst. Gebiete mit lastabhängigen Setzungen im Erwartungsbereich von gut tragfähigem Baugrund sind entsprechend ausgewiesen. 1.) große Setzungsempfindlichkeit u.a. aufgrund hoher organischer Anteile und/oder flüssiger bis weicher Konsistenz 2.) mittlere bis große Setzungsempfindlichkeit aufgrund sehr geringer Steifigkeit (fluviatile, brackische, marine Sedimente wie z.B. Klei) 3.) geringe bis mittlere Setzungsempfindlichkeit aufgrund geringer Steifigkeit wie z.B. Lößlehm, Auelehm (marine, brackische und fluviatile Sedimente) 4.) geringe bis große Setzungsempfindlichkeit und geringe bis große Setzungsdifferenzen aufgrund wechselnder Steifigkeiten 5.) geringe bis mittlere Setzungs-/Hebungsempfindlichkeit von Ton und Tongesteinen durch Schrumpfen/Quellen (Wassergehaltsänderungen), Hebung durch Kristallisationsdruck (infolge Pyritverwitterung/Gipsbildung) 6.) hebungsempfindlich (Volumenzunahme) bei Wasserzutritt durch Umwandlung von Anhydrit in Gips 7.) senkungsempfindlich aufgrund der Löslichkeit von Gips bei Wasserzutritt 8.) übliche lastabhängige Setzungen gut tragfähiger Locker- und Festgesteine Aus den Baugrundtypen können generelle Hinweise zu Setzungen und Hebungen entnommen sowie gezielte projektbezogene Untersuchungen geplant werden. Hebungserscheinungen sind bisher nur in wenigen Fällen, meist in Folge der Quelleigenschaften von Tonen beobachtet worden. Hebung in Folge von Gipskristallwachstum im Verwitterungsbereich von Tonsteinen ist nur in Einzelfällen beobachtet worden. Die IHSB50 kann keine Baugrunduntersuchungen gemäß DIN EN 1997-2:2010-10, DIN EN 1997-2/NA:2010-12 und DIN 4020:2010-12 ersetzen.
settings
Wasserversorgungskonzept Niedersachsen 1 : 500 000 - Veränderung des Nutzungsdrucks für den Betrachtungszeitpunkt 2100 (zu IST-Zustand) bei trockenen Verhältnissen für Landkreise (WMS Dienst)
Das Wasserversorgungskonzept Niedersachsen dient dem übergeordneten Ziel der langfristigen Sicherstellung der niedersächsischen Wasserversorgung, insbesondere der öffentlichen Wasserversorgung als ein maßgeblicher Baustein der Daseinsvorsorge. Die Wasserversorgung muss entsprechend der aktuellen und regionalen Herausforderungen und unter der Maßgabe einer nachhaltigen Grundwasserbewirtschaftung weiterentwickelt werden. Hierzu ist es sowohl für Politik und Wasserbehörden als auch für die Nutzer der Ressource notwendig, Handlungsbedarfe frühzeitig erkennen zu können, um im Weiteren rechtzeitig notwendige Maßnahmen für eine langfristige Sicherstellung der niedersächsischen Wasserversorgung zu ergreifen. Das Wasserversorgungskonzept Niedersachsen stellt einen hierfür erforderlichen landesweiten Informationsrahmen dar. Als Fachkonzeption dient es Wassernutzern, Zulassungsbehörden und dem Land für die Wasserbewirtschaftung und der Öffentlichkeit als transparente und in die Zukunft gerichtete Informations- und Planungsgrundlage. Vorgaben für Einzelverfahren sind ausdrücklich nicht das Ziel. Im Rahmen des Wasserversorgungskonzeptes erfolgt eine Bilanzierung des derzeitigen Standes (Bezugsjahr 2015) sowie der mittel- und langfristigen Entwicklungen der niedersächsischen Wasserversorgung. Hierbei werden das Grundwasserdargebot für mittlere und trockene Verhältnisse und die Wasserbedarfe der maßgeblichen Grundwassernutzer einander zu verschiedenen Zeitpunkten (2015, 2030, 2050 und 2100) gegenübergestellt. Die Methodik des Wasserversorgungskonzeptes Niedersachsen wurde rasterbasiert durchgeführt. Dafür wurde ein 500 x 500 m Raster erstellt, welches sich über ganz Niedersachsen und Bremen erstreckt. Landesweite Datengrundlagen, die der Planung der aktuellen und zukünftigen Bewirtschaftung des Grundwassers dienen, wurden auf das Raster übertragen. Diese bildeten die Grundlage der durchgeführten Berechnungen, Bewertungen und abschließenden Darstellungen. In der Karte ist für den Betrachtungszeitpunkt 2100 die Veränderung des Nutzungsdrucks gegenüber dem IST-Zustand bei trockenen Verhältnissen für Landkreise dargestellt.
Das LBEG führte vom Juli 2015 bis Mai 2017 eine systematische Kampagne zur Untersuchung von Bodenbelastungen im Umfeld von Erdgasförderplätzen durch. Insgesamt wurden 200 der 455 aktiven Erdgasförderplätze in Niedersachsen beprobt und auf mögliche Belastungen durch Schwermetalle, unterschiedliche Kohlenwasserstoffe, Dioxine und Furane untersucht. Außerdem wurde an ausgewählten Plätzen die spezifische Radioaktivität gemessen. Das Programm berücksichtigte alle Landkreise, in denen sich Erdgasförderplätze befinden. Neben dem Landkreis Rotenburg/Wümme waren das Standorte in den Landkreisen Aurich, Celle, Cloppenburg, Diepholz, Emsland, Grafschaft Bentheim, Heidekreis, Leer, Nienburg, Oldenburg, Vechta und Verden sowie in der Stadt Emden und der Region Hannover. Die Förderplätze wurden so ausgewählt, dass in jedem Landkreis ein ungefähr gleicher Anteil der insgesamt vorhandenen Förderplätze untersucht wurde (ca. 40%). Alle Untersuchungen erfolgten nach den rechtlichen Vorgaben der Bundes-Bodenschutzverordnung. Die Ergebnisse stellte das LBEG am 15. Mai 2017 im Rahmen einer Pressekonferenz vor. Der Endbericht liegt zum Download vor. Auf Basis der erarbeiteten Ergebnisse wurde u. a. vorgeschlagen, an allen Erdgasförderplätzen, die in Oberflächengewässer entwässern (insbesondere den Plätzen, die im Rahmen des o. g. Projektes (AG Hg I) nicht untersucht wurden), weitere Sedimentuntersuchungen durchzuführen. Die Sedimentuntersuchungen sind erforderlich, weil im Rahmen der durchgeführten Untersuchungen (AG Hg I) auffallend häufig Überschreitungen der Schwellenwerte (OW) in Sedimenten entwässerungsrelevanter Oberflächengewässer festgestellt wurden. Im Zuge der weiterführenden Sedimentuntersuchungen wurden im Sommer 2018 im Umfeld von insgesamt 42 Erdgasförderplätzen weitere orientierende Untersuchungen durchgeführt. Die Probenahme wurde an den Einleitstellen sowie im An- und Abstrom der Einleitstellen bzw. der Erdgasförderplätze sowohl in trockenen Gräben als auch in Oberflächengewässern durchgeführt. Die Ergebnisse wurden im November 2018 vorgelegt und im Endbericht zu den weiterführenden Sedimentuntersuchungen zusammengefasst (http://www.lbeg.niedersachsen.de/startseite/boden_grundwasser/schadstoffmessungen/untersuchungen_im_umfeld_von_erdgasfoerderplaetzen/untersuchungen-im-umfeld-von-erdgasfoerderplaetzen-135742.html).