Umweltinformationen werden gesucht. Bitte warten...
Filter
filter_list
Filter einstellen
Begrenze die Suche räumlich
search
2.147.172
Ergebnisse
2.147.172
Ergebnisse
Anzeigen:
public
Querbauwerke
Für die Erfüllung der Berichtspflichten nach der EG-WRRL als auch für die Gewässerbewirtschaftung bildet die Kenntnis über Querbauwerke in den Fließgewässern eine wesentliche Grundlage. Unter Querbauwerken werden hier sämtliche künstlich in das Gewässer eingebrachten, quer durch das Gewässerbett verlaufenden baulichen Strukturen verstanden, die die natürlichen Strömungsverhältnisse und damit auch die Sohl- und Uferstruktur des Gewässers beeinflussen.Zur Bauwerkskategorie „Künstliche Objekte im Flussbett“ gehören Sohlschwellen, Sohlgleiten, Abstürze sowie Messbauwerke und Auslauf/Entnahmebauwerke.Zur Bauwerkskategorie „Dämme und Wehre“ gehören feste Wehre und Dämme, bewegliche Wehre sowie Mühlen und Wasserkraftanlagen.Zur Bauwerkskategorie „Siele, Schöpfwerke und temporäre Sperren“ gehören Siele, Schöpf- und Pumpwerke sowie Sperrwerke und Verlaate.Zur Bauwerkskategorie „Schleusen“ gehören Schleusen und Schiffshebewerke.Zur Bauwerkskategorie „Durchgängigkeitsbauwerke“ gehören verschiedene Formen von Fischaufstiegsanlagen (FAA), Umgehungsgerinne und Fischabstiegsanlagen zur Verbesserung der ökologischen Durchgängigkeit.Zur Bauwerkskategorie „Kreuzungsbauwerke“ gehören Brücken, Durchlässe und Verrohrungen sowie Düker und Furten.Der Datenbestand bildet die Grundlage für die Bestandsaufnahme nach Artikel 5 der EG-WRRL, die alle 6 Jahre zu aktualisieren ist, für die Bewertung der Durchgängigkeit als Qualitätskomponente des ökologischen Zustands bzw. Potentials von Fließgewässern sowie für die Ableitung des Maßnahmenbedarfs.Diese Daten sind auch im INSPIRE Datenmodell „Annex 1: Gewässernetz“ erhältlich. Die Bereitstellung erfolgt über die Bundesanstalt für Gewässerkunde (BfG) per Darstellungs- und Downloaddienst, deren URLs in den Transferoptionen angegeben sind.
Seismische Stationen in Niedersachsen Seismische Stationen in Niedersachsen werden von verschiedenen Institutionen und zu unterschiedlichen Zwecken betrieben. Dazu gehören Stationen zur dauerhaften und unabhängigen Überwachung durch staatliche Erdbebendienste und Forschungsinstitutionen, Stationen zur Überwachung von Bergbauaktivitäten durch Industrieunternehmen und zeitweilig installierte Stationen zum Beispiel im Rahmen von Forschungsprojekten. Der Niedersächsische Erdbebendienst (NED) im LBEG betreibt seismische Stationen im Rahmen der folgenden Messnetze und Aufgaben. Stationen dieser Messnetze werden auf dem Kartenserver dargestellt: 1) Landesmessnetz Niedersachsen (LBEG): Unabhängige Erdbebenüberwachung in Niedersachsen Das Landesmessnetz Niedersachsen dient der systematischen Registrierung von natürlichen und anthropogen verursachten, induzierten Erdbeben in Niedersachsen. Es befindet sich zurzeit im Aufbau. Vorbereitet sind sechs Stationen, die vor allem in Gebieten Niedersachsens installiert werden, in denen bislang noch keine seismischen Stationen betrieben worden sind. Hochempfindliche Seismometer und Standorte an seismisch ruhigen Standorten sollen die flächendeckende Registrierung von Erdbeben auch deutlich unterhalb der Spürbarkeit des Menschen ermöglichen. 2) Kooperationsnetz Niedersachsen (LBEG, BGR): Unabhängige Erdbebenüberwachung im Gebiet der Erdgasförderregionen In den Erdgasförderregionen im zentralen Niedersachsen betreibt das LBEG ein Messnetz aus hochempfindlichen Seismometern in Kooperation mit der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR). Es befindet sich zurzeit in der technischen Überarbeitung und Erweiterung. Vorbereitet werden sechs Stationen für das Gebiet zwischen Cloppenburg und Munster bzw. Nienburg (Weser) und Rotenburg (Wümme). Induzierte Erdbeben im Zusammenhang mit Erdgasförderung können durch dieses Messnetz noch besser bewertet werden. Zum Beispiel werden Lokalisierungen mit geringen Unsicherheiten von +/-2 km angestrebt, so dass schwache Erdbeben besser ausgewertet werden können. Weitere seismische Messnetze in Niedersachsen ohne Beteiligung des LBEG werden im Folgenden kurz beschrieben. Für detaillierte Informationen verweisen wir auf die Internetseiten der jeweiligen Betreiber. Stationen dieser Messnetze werden auf dem Kartenserver nicht dargestellt: 3) German Regional Seismic Network (GRSN) (Kooperation seismologischer Institute): Erdbebenüberwachung und Forschungsaufgaben Das Deutsche Seismologische Regionalnetz (German Regional Seismic Network, GRSN) wurde in den Neunzigerjahren aufgebaut mit dem Ziel, deutschlandweit hochwertige und einheitliche seismologische Daten zu erheben. Es wird durch die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) koordiniert und in Zusammenarbeit mit deutschen Hochschul- und Forschungseinrichtungen sowie Landeserdbebendiensten betrieben. Seit seiner Errichtung wird es kontinuierlich ausgebaut. Neben den Stationsnetzen der Landeserdbebendienste liefert es einen wichtigen Beitrag zur Erdbebenüberwachung in Deutschland, in Europa und weltweit. Darüber hinaus liefert es wichtige Daten für Forschungsprojekte. Einige Stationen des GRSN befinden sich in Niedersachsen. Die Standorte der Messstationen sind zum Beispiel einsehbar unter https://www.bgr.bund.de. Eine Liste der wichtigsten Metadaten finden Sie in Textform unter https://eida.bgr.de/fdsnws/station/1/query?format=text&level=station&network=GR. Für weitere Informationen steht Ihnen die BGR als zentrale Ansprechpartnerin zur Verfügung. 4) Stationen der BGR für spezifische Beratungsaufgaben Im Rahmen ihrer spezifischen Beratungs- und Forschungsaufgaben betreibt die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) seismische Stationen, von denen einige in Niedersachsen installiert sind. Die Standorte der Messstationen der BGR sind einsehbar unter https://www.bgr.bund.de. Eine Liste der wichtigsten Metadaten finden Sie in Textform unter https://eida.bgr.de/fdsnws/station/1/query?format=text&level=station&network=GR. Für weitere Informationen kontaktieren Sie bitte die BGR. 5) Messnetze SON und DEN des Bergschadenskundlichen Beweissicherungssystems (BBS), (BVEG) Zur Überwachung seismischer Ereignisse im Umfeld der Erdgasfördergebiete wird durch den Bundesverband Erdgas, Erdöl und Geoenergie e. V. (BVEG) ein seismisches Messnetz, das Bergschadenskundliche Beweissicherungssystem (BBS), betrieben. Die Überwachung dient zum einen der Bewertung der Auswirkungen von Erschütterungen auf Gebäude. Hierzu werden Erschütterungsmessstationen zur Bewertung entsprechend DIN 4150 betrieben (Messnetz DEN). Diese Stationen sind zumeist in öffentlichen Gebäuden in Ortszentren installiert. Zum anderen wird die Überwachung für weitergehende seismologische Auswertungen genutzt. Hierzu werden Bohrloch- und Oberflächenstationen an seismisch ruhigen Orten betrieben (Messnetz SON). Die Daten des BVEG werden dem NED für die Erdbebenüberwachung im Gebiet der Erdgasförderregionen zur Verfügung gestellt. Die Standorte der Messstationen des Bundesverbandes Erdöl, Erdgas und Geoenergie e.V. (BVEG). sind einsehbar unter http://www.bveg-maps.de/. Für weitere Informationen kontaktieren Sie bitte den BVEG. 6) Temporäre Forschungsprojekte (verschiedene Betreiber) In Forschungsprojekten werden seismologische Detailfragen untersucht. Projekte werden von Universitäten und anderen Forschungsinstituten durchgeführt, öffentlich gefördert, in Zusammenarbeit mit oder im Auftrag von Bergbauunternehmen. Stationen im Rahmen von Forschungsprojekten werden für eine begrenzte Zeit betrieben, je nach Fragestellung typischerweise für einige Wochen bis drei Jahre. Eine Übersicht über Forschungsprojekte seit 2013, in deren Rahmen seismische Stationen betrieben wurden, stellt der NED auf Anfrage zur Verfügung. Für Informationen des Beeinflussungsbereichs von Windenergieanlagen auf seismische Stationen verweisen wir auf die Erläuterungen in den Metadaten des Themas „Seismische Stationen – Beeinflussungsbereich Windenergieanlagen“.
Die BK 50 ist räumlich und inhaltlich eng mit anderen landesweit vorliegenden Kartenwerken bzw. Datenbanken (u. a. Geologischer Karte, Bodenschätzung, Forstlicher Standortskartierung, digitalen Höhenmodellen, historischen und aktuellen topographischen Karten sowie der Profil- und Labordatenbank) abgestimmt. Ein einheitliches Regelwerk der Erstellung gewährleistet landesweit eine vergleichbare Qualität. Die BK 50 hat mit 13.000 Legendeneinheiten und 196.000 Flächen eine große fachliche und räumliche Aussagetiefe. Sie entspricht damit den Ansprüchen an mittelmaßstäbige Bodenkarten. Die Karte zeichnet sich u. a. durch eine stärkere räumliche Differenzierung von Bodentypen (z. B. Podsole, Schwarzerden), eine aktualisierte Moorverbreitung mit Berücksichtigung der Vererdungsstufen und Moorfolgeböden von Kulturböden (z. B. Tiefumbruch, Plaggenesch, Spittkulturböden, Marschhufenboden) sowie die Ausweisung kulturhistorisch bedeutsamer Flächen und regionaler Besonderheiten (z. B. Wurten, Deichlinien) aus. Mit der systematischen Anwendung der Deckschichtengliederung werden flachgründige Böden (Rendzinen, Ranker, flache Braunerden und Parabraunerden) genauer und räumlich differenzierter beschrieben. Die Bodenkarte enthält Angaben zur Leitbodenform und vergesellschafteten Bodenformen und ist nutzungsdifferenziert. Mit der Nutzungsdifferenzierung werden die Merkmale, Horizonte und Bodentypen an die jeweiligen Nutzungen angepasst. Betroffen davon sind z. B. die Oberbodenhorizonte, die Humusauflagen unter Wald, die Grundwasserstände und die Angaben zur Vernässung sowie ggf. die Bodenerosion unter Acker.
public
Verteilung mineralischer Rohstoffe - Kiesvorkommen
Bohrdatenauswertung 0-1m GOK
Die Karte Verteilung mineralischer Rohstoffe in der deutsche Nordsee – Kiesvorkommen stellt Informationen zur Verbreitung von Sedimenten dar, die nach deren Kiesgehalt klassifiziert wurden. Hintergrund für die Ausweisung des Kiesgehaltes ist der kontinuierlich hohe Bedarf dieses mineralischen Rohstoffs, z.B. für die Bauwirtschaft. Die vorliegende Karte umfasst den Bereich der gesamten deutschen Nordsee im Maßstab 1 : 250.000 mit einer Aussage zu den Sedimenten der oberen 0,2 m ab Meeresbodenoberfläche. Drei zusätzliche Karten zeigen Auswertungen von Bohrdaten in den Teufenintervallen 0-1 m, 1-2 m und 2-3 m. Die Legende umfasst fünf Klassen in Abstufungen von 20 Gew.-% Kiesanteil. Grundlage der Kartendarstellung sind Sedimentproben von der Meeresbodenoberfläche bis zu einer Teufe von 0,2 m sowie Schichtbeschreibungen von Bohrungen, die bis November 2012 im deutschen Nordseeraum zur Verfügung standen. Die Grundlagendaten sind in Datenbanken beim BSH und LBEG abgelegt, zukünftig erhobene Daten werden darin integriert. Die Lockersedimente werden entsprechend ihrer Korngrößen nach DIN EN 14688-1 eingeteilt: Ton (Korngröße <0,002 mm); Schluff (Korngröße 0,002 bis 0,063 mm); Sand (Korngröße 0,063 bis 2,0 mm); Kies (Korngröße 2,0 bis 63 mm); Steine und Blöcke (>63 mm). Auf Basis der im Labor durchgeführten Korngrößenanalysen sowie den Schichtbeschreibungen aus Bohrungen werden die Sedimente für entsprechende Fragestellungen klassifiziert.
„Mit der im Jahr 2000 veröffentlichten Europäischen Wasserrahmenrichtlinie soll ein Ordnungsrahmen für den Schutz der Binnenoberflächengewässer, der Übergangsgewässer, der Küstengewässer und des Grundwassers geschaffen werden. Das Ziel ist die Vermeidung einer weiteren Verschlechterung sowie der Schutz und die Verbesserung des Zustandes aller aquatischen Ökosysteme. Dazu sollen spezifische Maßnahmen zur schrittweisen Reduzierung von Einleitungen sowie zur Sanierung durchgeführt werden. Spätestens bis zum Jahr 2015 muss für die meisten Gewässer der so genannte „gute“ Zustand erreicht sein. Für die Küsten- und Übergangsgewässer wird als Qualitätsmerkmal für den ökologischen Zustand neben den Makrophyten und dem Makrozoobenthos (bei den Übergangsgewässern zusätzlich Fischfauna) auch die Bewertung des Phytoplanktons in der Richtlinie verlangt. Dazu sind die Artenzusammensetzung, die Abundanz und die Biomasse zu erfassen. Ein großes Problem bei vielen in der EG-WRRL geforderten Parametern ist die Ermittelung des Referenzzustandes, also der natürlichen Hintergrundwerte, wie sie vor einer anthorpogenen Beeinflussung der Ökosysteme vorhanden waren. Diese Situation soll dem „sehr guten“ Zustand entsprechen. Meist sind aber nicht genügend historische Daten vorhanden, um diesen Zustand direkt zu definieren. Die auf dem Phytoplankton basierenden Bewertungssysteme werden in den verschiedenen EU-Mitgliedstaaten unterschiedlich gehandhabt. Das hat vor allem auch mit dem Umfang und der Qualität der verfügbaren Daten zu tun. Für Deutschland wurden bisher alle verfügbaren Daten für die Ostseeküstengewässer in einem vom BMBF geförderten Projekt (ELBO – Entwicklung von leitbildorientierten Bewertungsgrundlagen für innere Küstengewässer der deutschen Ostseeküste nach EG-WRRL) statistisch ausgewertet und darauf basierend ein Vorschlag für die Qualitätsbewertung an Hand von Phytoplanktonmessgrößen erstellt. Dieses Bewertungssystem bezieht sich bisher jedoch nur auf einen engen Salzgehaltsbereich, da für eine statistische Auswertung der gesamten Salzgehaltsspanne an der deutschen Ostseeküste nicht genügend konsistente Datensätze zur Verfügung standen. Für die Nordsee bestand in Deutschland bisher kein System, um die für die EG-WRRL, definierten Gewässertypen mit Hilfe der Phytoplanktonpopulationen zu klassifizieren. Ziel der vorliegenden Auftragsarbeit war es daher, für die deutschen Nordseeküstengewässer alle verfügbaren Phytoplaktondaten sowie die zugehörigen Umfeldparameter zu sammeln, zu vereinheitlichen, statistisch zu analysieren und einen Vorschlag für ein entsprechendes multifaktorielles Bewertungssystem zu erstellen. Der zweite Zwischenbericht […] gibt einen Überblick über die bis jetzt durchgeführten Arbeiten und den vorliegenden Datenbestand. […] Basierend auf dieser Version wird der Endbericht entstehen. […]“
settings
Geotechnische Klassifizierung der Sedimente – Bodenverflüssigung – Meeresbodensedimente mit Korngrößenverteilungen die bei Einwirkung zur Bodenverflüssigung neigen
Bohrdatenauswertung in 1 m GOK (WMS Dienst)
Die Karte Bodenverflüssigungspotenzial stellt Informationen zur Verbreitung von Sedimenten an der Meeresbodenoberfläche dar, die aufgrund ihrer spezifischen Korngrößenverteilungen unter äußerer Lasteinwirkung (Entstehung von Porenwasserüberdruck) zur Bodenverflüssigung neigen können. Bei den Sedimenten handelt es sich in der Regel um eng gestufte Grobschluffe bis Mittelsande. Der Effekt der Bodenverflüssigung kann bei Baumaßnahmen und Bauwerken, wie z.B. Pipelines und Seekabel am Meeresboden, von Bedeutung sein. Die Karte umfasst den Bereich der gesamten deutschen Nordsee im Maßstab 1 : 250.000 mit einer Aussage zu den Sedimenten der oberen 0,2 m ab Meeresbodenoberfläche. Zwei zusätzliche Karten zeigen Ergebnisse der Auswertung von Bohrdaten in Teufen von 1 m und 2 m unter Meeresboden. Grundlage der Kartendarstellung sind Sedimentproben der Meeresbodenoberfläche bis zu einer Teufe von 0,2 m sowie Schichtbeschreibungen von Bohrungen in den oben genannten Teufenbereichen, die bis April 2012 zur Verfügung standen. Die Grundlagendaten sind in Datenbanken beim BSH und LBEG abgelegt, zukünftig erhobene Daten werden darin integriert. Die Lockersedimente werden entsprechend ihrer Korngrößen nach DIN EN 14688-1 eingeteilt: Ton (Korngröße <0,002 mm); Schluff (Korngröße 0,002 bis 0,063 mm); Sand (Korngröße 0,063 bis 2,0 mm); Kies (Korngröße 2,0 bis 63 mm); Steine und Blöcke (Korngröße >63 mm). Auf Basis der im Labor durchgeführten Korngrößenanalysen, den Schichtbeschreibungen aus Bohrungen und der Kornsortierung werden die Sedimente auf Grundlage der Klassifizierung von STUDER & KOLLER (1997) klassifiziert. Die Legende umfasst zwei Klassen, Bodenverflüssigung „potentiell möglich“ und „nicht zu erwarten“.
settings
Wärmeleitfähigkeiten für Erdwärmesondenanlagen (Sonden-Bezugstiefe 80 m) (WMS Dienst)
Die vorliegenden Karten mit Punktdaten zu „Wärmeleitfähigkeiten für Erdwärmesondenanlagen“ bis 30 kW Leistung und Sondenlängen von 40 m, 60 m, 80 m oder 100 m wurden anhand der verfügbaren Bohrinformationen in der Bohrdatenbank Niedersachsen erarbeitet. Die dargestellten Werte sind abgeschätzten Wärmeleitfähigkeiten basierend auf Werten aus der VDI 4640, eigenen Messwerten und Werten des bundeseinheitlichen Produktkataloges zur wirtschaftlichen Anwendung oberflächennaher geothermischer Daten (Hrsg. Ad-Hoc AG Hydrogeologie, 2008). Auf der Karte sind durchschnittliche Wärmeleitfähigkeiten für ausgewählte Bohrungen dargestellt. Beim Anklicken einer Bohrung öffnet sich eine Info-Box mit den wichtigsten Stammdaten der Bohrung. Wärmeleitfähigkeiten einzelner Schichteinheiten können abgerufen werden, indem der Link "weitere Informationen" angeklickt wird. Für den geplanten Standort einer neuen Erdwärmesonde können die dargestellten Werte in der näheren Umgebung – vorausgesetzt der Untergrundaufbau ist vergleichbar – eine Orientierung darüber geben, mit welcher durchschnittlichen Wärmeleitfähigkeit bei einer Sondenlänge von 40 m, 60 m, 80 m oder 100 m zu rechnen ist. Die Daten dienen einer ersten Einschätzung möglicher Wärmeleitfähigkeiten und ersetzen nicht die konkrete Überprüfung im Rahmen des Anlagenbaus anhand der örtlich angetroffenen Verhältnisse. Weitere Informationen zu rechtlichen und technischen Grundlagen sind im „Leitfaden Erdwärmenutzung in Niedersachsen“ (GeoBerichte 24) zu finden.
public
Hydrogeologische Karte von Niedersachsen 1 : 50 000 – Mittlere monatliche Grundwasserneubildung 1991 - 2020 im Dezember, Methode mGROWA22
Die Karte zeigt die mittlere monatliche Grundwasserneubildung für den Monat Dezember im 30-jährigen Zeitraum 1991-2020. Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche gemessene und anschließend räumlich interpolierte Klimabeobachtungsdaten des Deutschen Wetterdienstes genutzt. Diese sind die potenzielle Verdunstung, die auf Grundlage der FAO-Grasreferenzverdunstung berechnet wurde (DWD, unveröffentlicht) und der Niederschlag basierend auf dem REGNIE-Produkt (Rauthe et al, 2013), welche nach Richter korrigiert wurden (Richter, 1995). Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 100 x 100 m Raster für mGROWA22 herunterskaliert.
settings
INSPIRE: Information system salt structures: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) (InSpEE) (WMS)
The WMS InSpEE (INSPIRE) provides information about the areal distribution of salt structures (salt domes and salt pillows) in Northern Germany. Contours of the salt structures can be displayed at horizontal cross-sections at four different depths up to a maximum depth of 2000 m below NN. The geodata have resulted from a BMWi-funded research project “InSpEE” running from the year 2012 to 2015. The acronym stands for "Information system salt structures: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air)”. Taking into account the fact that this work was undertaken at a scale for providing an overview and not for investigation of single structures, the scale of display is limited to a minimum of 1:300.000. Additionally four horizontal cross-section maps display the stratigraphical situation at a given depth. In concurrence of maps at different depths areal bedding conditions can be determined, e.g. to generally assess and interpret the spread of different stratigraphic units. Clearly visible are extent and shape of the salt structures within their regional context at the different depths, with extent and boundary of the salt structures having been the main focus of the project. Four horizontal cross-section maps covering the whole onshore area of Northern Germany have been developed at a scale of 1:500.000. The maps cover the depths of -500, -1000, -1500, -2000 m below NN. The four depths are based on typical depth requirements of existing salt caverns in Northern Germany, mainly related to hydrocarbon storage. The shapes of the structures show rudimentary information of their geometry and their change with depths. In addition they form the starting point for rock mechanical calculations necessary for the planning and construction of salt caverns for storage as well as for assessing storage potentials. The maps can be used as a pre-selection tool for subsurface uses. It can also be used to assess coverage and extension of salt structures. Offshore areas were not treated within the project. All horizontal cross-section maps were adjusted with the respective state geological survey organisations. According to the Data Specification on Geology (D2.8.II.4_v3.0) the WMS InSpEE (INSPIRE) provides INSPIRE-compliant data. The WMS InSpEE (INSPIRE) contains two group layers: The first group layer “INSPIRE: Salt structures in Northern Germany“ comprises the layers GE.Geologic.Unit.Salt structure types, GE.GeologicUnit.Salt pillow remnants, GE.GeologicUnit.Structure-building salinar and GE.GeologicUnit.Structural outlines. The layer GE.GeologicUnit.Structural outlines contains according to the four depths four sublayers, e.g. GE.GeologiUnit.Structural outlines 500 m below NN. The second group layer „INSPIRE: Horizontal cross-section maps of Northern Germany“ comprises according to the four depths four layers, e.g. Horizontal cross-section map – 500 m below NN. This layer, in turns, contains two sublayers: GE.GeologicFault.Relevant fault traces and GE.GeologicUnit.Stratigraphic Units. Via the getFeatureInfo request the user obtains additional information on the different geometries. In case of the GE.Geologic.Unit.Salt structure types the user gets access to a data sheet with additional information and further reading in German for the respective salt structure via the getFeatureInfo request.
settings
BodenBewegungsdienst Deutschland (BBD) 2015-2021 L3 Vertical (WMTS)
Die vielfältige Geologie Deutschlands sowie die sich hieraus ergebende Nutzung sind Ursachen für verschiedenste Bodenbewegungen, wie z.B. Bodenkompaktion, Erdrutsche, Grundwasserentnahme, Erdgasförderung, (Alt-)Bergbau- und Kavernenspeicherbetrieb. Die Produkte des BodenBewegungsdienst Deutschland (BBD) basieren auf SAR Daten der Copernicus Sentinel-1 Mission und einer Persistent Scatterer Interferometrie (PSI) Verarbeitung. Das BBD Portal enthält PSI Daten der gesamten Bundesrepublik Deutschland (ca. 360.000 km²). Die PSI Technologie ermöglicht präzise Messungen von Bewegungen der Erdoberfläche im mm Bereich. Die Messpunkte (Persistent Scatterer, PS) entsprechen bereits am Boden vorhandenen Objekten, wie z.B. Gebäuden, Infrastruktur oder natürlichen Objekten, wie Gesteinen und Schuttflächen. Jeder PS wird durch einen über mehrere Jahre gemittelten Geschwindigkeitswert (ausgedrückt in mm/Jahr) und eine Zeitreihe der Verschiebungen charakterisiert. Für jeden PS kann die Zeitreihe der Verschiebungen von der ersten Sentinel-1 Aufnahme bis zur letzten ausgewerteten Sentinel-1 Aufnahme eingesehen werden. Die bewegungszerlegten virtuellen PS werden nach der mittleren Geschwindigkeit in Ost-West Richtung, gemäß der folgenden Konvention im BBD Portal visualisiert: - die grüne Farbe entspricht den virtuellen PS, deren mittlere Geschwindigkeit sehr gering ist, zwischen -2,0 und +2,0 mm/Jahr, d.h. im Empfindlichkeitsbereich der PSI Technologie; - in den Farben von gelb bis rot werden diejenigen virtuellen PS mit negativer Bewegungsrate visualisiert, d.h. Bewegungen nach unten - mit den Farben von türkis bis blau werden diejenigen virtuellen PS mit positiver Bewegungsrate visualisiert, d.h. Bewegungen nach oben. Die Präzision der dargestellten PSI Daten liegt in der Größenordnung von typischerweise +- 2 mm/Jahr für die mittlere Geschwindigkeit.