Logo Logo
  • Start
  • Suche
  • Karte
  • Dashboard
  • Über
  • |
  • Kontakt
  • Start
  • Suche
  • Karte
  • Dashboard
  • Über
  • Kontakt
  • Impressum
  • Datenschutz
  • Barrierefreiheit
Was suchst Du?
Umweltinformationen werden gesucht. Bitte warten...
Filter filter_list Filter einstellen

Begrenze die Suche räumlich

search
92.775 Ergebnisse
92.775 Ergebnisse
Anzeigen:
Filter
Ergebnistypen
settings Ackerbauliches Ertragspotential der Böden in Deutschland 1:1.000.000 (WMS)
WMS-Service zum Ackerbaulichen Ertragspotential der Böden in Deutschland. Das Müncheberger Soil Quality Rating (SQR) wurde vom Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) entwickelt. Das SQR ist ein Verfahren zur Bewertung der Eignung von Standorten für die landwirtschaftliche Nutzung und dient der Abschätzung des Ertragspotentials im globalen Maßstab. Die Methode wurde für die Anwendung auf Bodenkarten von der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) modifiziert und ist in der Methodendokumentation der Ad-hoc-AG Boden aufgenommen. Die Karte zeigt eine solche Anwendung des Verfahrens für die Ackerböden in Deutschland auf Basis der nutzungsdifferenzierten Bodenübersichtskarte von Deutschland im Maßstab 1:1.000.000. Weitere Eingangsdaten sind die mittleren jährlichen Klimadaten (DWD), das Relief (BKG) und die Landnutzung (CLC2006). Das Soil Quality Rating bewertet einen Standort zunächst mit Hilfe von acht Basisindikatoren wie dem Bodensubstrat oder der effektiven Durchwurzelungstiefe. Die Punktzahlen der Basisindikatoren werden unter Verwendung unterschiedlicher Wichtungsfaktoren zu einem Summenwert zusammengefasst. Anschließend erfolgt die Bewertung von ertragslimitierenden Gefährdungsindikatoren wie der Durchwurzelungstiefe oder der Trockenheitsgefährdung. Nur der Gefährdungsindikator, der die höchste Gefährdung anzeigt geht in die Berechnung ein. Das finale Soil Quality Rating bewertet die Standorte in einer Skala zwischen 0 und 102 Punkten. Je höher der Wert, desto größer ist das Ertragspotential des Standorts.
Zuletzt aktualisiert: 22.04.2025
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
public Potenzielle Standorteignung für Erdwärmekollektoren (Einbautiefe 1,2 - 1,5 m) in Niedersachsen 1 : 50 000
In der Karte „Potenzielle Standorteignung für Erdwärmekollektoren (Einbautiefe 1,2 - 1,5 m)“ zur Beheizung von Gebäuden sind folgende vier Eignungsklassen ausgewiesen: • gut geeignet, • geeignet, • wenig geeignet, • nicht geeignet (Fels, Festgestein). Die Auswertung basiert auf den Daten von bodenkundlichen Karten, den zugehörigen Beschreibungen der Bodenprofile, den Angaben zum Grundwasserstand sowie der Bewertung von Bodenarten und Festgesteinen. Erdwärmekollektoren nutzen die im Boden gespeicherte Energie aus solarer Einstrahlung und atmosphärischen Einträgen (Niederschlag). Sie werden unterhalb des winterlichen Bodenfrostbereichs eingebaut, bei Flächenkollektoren üblicherweise in einer Tiefe von 1,2-1,5 m. Die beste Energieeffizienz beim Wärmeentzug wird beim Einbau in feuchte, wasserspeichernde, dicht gelagerte, sandreiche Böden erreicht. Trockene, locker gelagerte Böden weisen geringe Entzugsleistungen auf. Beim Auftreten von Festgesteinen mit geringer Verwitterungsmächtigkeit kann der Einbau von Erdwärmekollektoren in der erforderlichen Tiefe schwierig bzw. unwirtschaftlich sein. Erdwärmekollektoren eignen sich sowohl zur Beheizung als auch zur Kühlung von Gebäuden und technischen Bauwerken. Die Daten dienen einer ersten Einschätzung zur potenziellen Standorteignung für Erdwärmekollektoren und ersetzen nicht die konkrete Überprüfung im Rahmen des Anlagenbaus anhand der örtlich angetroffenen Verhältnisse. Weitere Informationen zu rechtlichen und technischen Grundlagen sind im „Leitfaden Erdwärmenutzung in Niedersachsen“ (GeoBerichte 24) und in „Erstellung von Planungsgrundlagen für die Nutzung von Erdwärmekollektoren“ (GeoBerichte 5) zu finden.
Zuletzt aktualisiert: 10.12.2024
folder_code Datenkataloge
/ Geodatensatz
INSPIRE Open Data
arrow_right_alt
public Bericht: "Schlacke: Eisen- und Kupfererz: Kataster Seewasserbau – Niedersächsische Küste (2003)"
„Erstmalig liegt eine kartographische Erfassung der im Seewasserbau an der niedersächsischen Küste verwendeten Schlackenmaterialien aus der Verhüttungsindustrie vor, von denen bis heute nicht eindeutig geklärt ist, ob die in ihnen enthaltenen Schwermetalle in bioverfügbarer Form in die Umwelt gelangen. Unter den teilweise extremen Umweltbedingungen, denen die Schlacken im marinen Litoral ausgesetzt sind, besteht die Möglichkeit sich langfristig entwickelnder Verwitterungseffekte, die in normierten Testverfahren zur Stabilitätsprüfung von Wasserbausteinen nicht simulierbar sind. Die Daten dieses Katasters dienen einer Dokumentation sämtlicher Einbauorte von Schlackesteinen, die über einen Zeitraum von 6 Jahren entlang der niedersächsischen Küste zurKenntnis gelangten. Im Verlauf von 27 Bereisungen wurden 13 Standorte mit 117 Einzelabschnitten als Bereiche identifiziert, in denen Schlackesteine verbaut waren. Von Westen nach Osten sind diesdie Insel Borkum, die Versuchsschüttung Campen (Ems), die Leybucht mit den Bereichen Leyhörn und Leysiel, der Norddeicher Yachthafen, die Inseln Norderney, Baltrum, Langeoog, Spiekeroog, Wangerooge, Minsener Oog, ein Deichabschnitt bei Blexen (Weser) sowie der Bereich um die Kugelbake bei Cuxhaven. Sämtliche Standorte wurden anhand eines einfachen Merkmalkataloges charakterisiert. Das Hauptinteresse galt makroskopisch erkennbaren abblätternden Oberflächen, Riss- und Rostbildungen. In 52 Fällen, in denen die verbaute Schlackeart vor Ort nicht gesichertidentifiziert werden konnte, wurden Analysen zur Bestimmung der chemischen Zusammensetzung ausgeführt. Am häufigsten waren Schlacken aus der Kupfererz-Verhüttung, die als „Eisensilikatgestein“ oder auch „NA-Schlacke“ bezeichnet werden, ferner traten Schlacken aus der Roheisen- und Stahlproduktion auf sowie Schlacken aus der Kupferrückgewinnung. Die begutachteten Wasserbauwerke befanden sich alle oberhalb der Niedrigwasser-Linie und enthielten außer Schlacken verschiedener Größen vielfach – zum Teil auch überwiegend - Anteile von Natursteinen wie Basalt, Granit oder Grauwacke; mitunter waren Eisen- oder Schrottanteile sowie Backsteine oder Bauschutt vertreten. Vereinzelt wurden mit Schlacken versetzte Bereiche nachträglich mit Natursteinen abgedeckt. Die meisten der begutachteten Schlackestandorte befanden sich im Bereich von Buhnen und Deckwerken der brandungsexponierten Westseiten der Inseln, an Leitdämmen und Deckwerken von Hafenvorfeldern und Hafenanlagen sowie an Fußbermen von Deichen und Schwellschutzdämmen. Die häufigsten Verbauarten der Schlacken waren lose oder gesetzte Schüttungen, die unvergossen oder mit Beton oder Asphalt vergossen bzw. verklammert waren. Diese Stabilisierungen hielten in vielen Fällen dem Ansturm von Brandung und Strömung nicht stand, so dass neben aufgerissenen Deckwerken sowie durch Sandschliff verursachte Abrasionen auch gesprungene oder mit Mikrorissen durchsetzte Schlacken auftraten. Als Ursachen werden Temperaturschwankungen vermutet, die aufgrund produktionsbedingter Prädispositionen und Inhomogenitäten im Kristallgitter zu Rissbildungen führten. Eindringender Rost rief Sprengungen und Oberflächenverfärbungen an Schlackesteinen und Kontaktsedimenten hervor. Die Verwitterungsbeständigkeit von Schlacken aus der Kupferproduktion übertrifft erheblich die der rasch korrodierenden Schlacken aus der Eisen- und Stahlproduktion.“
Zuletzt aktualisiert: 10.12.2021
folder_code Datenkataloge
/ Geodatensatz
arrow_right_alt
public 3D Modell des tieferen Untergrundes des Norddeutschen Beckens
Das „TUNB 3D-Modell des Norddeutschen Beckens“ liefert abfragebasiert Informationen zur räumlichen Verteilung von Basisflächen, Salzstrukturen und Störungen im Norddeutschen Becken (Festland und Offshore Deutsche Nordsee). Das Modell beinhaltet 13 „litho“-stratigraphische Basisflächen von spät-paläozoischen bis känozoischen Formationen. Dabei bildet die Basisfläche des permischen Zechstein die Basis des Modells und die känozoische „Basis Rupelium“ die jüngste ausmodellierte stratigraphische Basisfläche. Zur Oberfläche hin schließt das Modell mit der Fläche der Geländeoberkante ab. Im Bereich der Deutschen Nordsee entspricht dies dem Meeresboden. 273 Salzstrukturen wurden unter Zuhilfenahme seismischer Daten und Bohrungen, sowie teilweise aus den kartierten Verbreitungsgrenzen einzelner Horizonte modelliert. Im Modell werden diese Strukturen durch ihre Umhüllende dargestellt. Aufgrund ihrer hohen Anzahl konnten nicht alle bekannten Störungen innerhalb des Modellgebietes in das Modell aufgenommen werden. Störungen wurden generell ab einer Länge von 5 km und einem Versatz von mindestens 3 Horizonten modelliert. Einzelne wichtige Störungen wurden zusätzlich modelliert, auch wenn sie den oben genannten Kriterien nicht entsprachen. Aufgrund seiner Auflösung und notwendiger Generalisierungen eignet sich das Modell nicht für detaillierte Standortuntersuchungen. Das 3D-Modell ist das Produkt eines von der BGR koordinierten Verbundprojektes, erstellt zwischen 2014 bis 2020. In diesem Projekt modellierten die Staatlichen Geologischen Dienste der Bundesländer Schleswig-Holstein (LLUR), Mecklenburg-Vorpommern (LUNG), Brandenburg (LBGR), Sachsen-Anhalt (LAGB) und Niedersachen (LBEG) ihre jeweiligen Landesgebiete. Das Landesgebiet von Hamburg wurde durch das LLUR, das von Bremen durch das LBEG und das von Berlin durch Geologischen Dienst von Brandenburg (LBGR) mit modelliert. Für die Modellierung der Deutschen Nordsee war die BGR zuständig. Die Urheberschaft der Landesmodelle liegt somit auch bei den Staatlichen Geologischen Diensten, die diese jeweils erstellt haben. Als Modellierungssoftware kam das Programmpaket Paradigm SKUA-GOCAD zum Einsatz. Wir danken EMERSON E&P für die Bereitstellung von Paradigm SKUA-GOCAD und EPOS im Rahmen des Academic Software Programmes. Das Modell wird passend für diese Software zum Download angeboten.
Zuletzt aktualisiert: 07.04.2025
folder_code Datenkataloge
/ Geodatensatz
arrow_right_alt
settings Hydrogeologische Karte von Niedersachsen 1 : 50 000 – Mittlere monatliche Grundwasserneubildung 1981 - 2010 im Dezember, Methode mGROWA22 (WMS Dienst)
Die Karte zeigt die mittlere monatliche Grundwasserneubildung für den Monat Dezember im 30-jährigen Zeitraum 1981-2010. Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche gemessene und anschließend räumlich interpolierte Klimabeobachtungsdaten des Deutschen Wetterdienstes genutzt. Diese sind die potenzielle Verdunstung, die auf Grundlage der FAO-Grasreferenzverdunstung berechnet wurde (DWD, unveröffentlicht) und der Niederschlag basierend auf dem REGNIE-Produkt (Rauthe et al, 2013), welche nach Richter korrigiert wurden (Richter, 1995). Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 100 x 100 m Raster für mGROWA22 herunterskaliert.
Zuletzt aktualisiert: 10.12.2024
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
public Hintergundwerte für Chrom (Cr) in Böden in Deutschland 1:1.000.000
Durch die LABO wurden 2017 für 16 Elemente neue, bundesweite Hintergrundwerte veröffentlicht. Sie beruhen auf Profilinformationen und Messdaten von Königswasserauszügen, die durch die BGR zusammengeführt und homogenisiert wurden. Daten mit hohen Bestimmungsgrenzen wurden nach bestimmten Kriterien von der weiteren Auswertung ausgeschlossen, damit die Bestimmungsgrenzen nicht die Hintergrundwerte beeinflussen. Um die Hintergrundwerte nicht durch Regionen mit hoher Stichprobendichte überproportional beeinflussen zu lassen, wurde in Teilen eine räumliche Ausdünnung durchgeführt. Die Werte mehrerer Horizonte eines Standortes wurden durch tiefengewichtete Mittelwerte zu einem Wert zusammengezogen. Zur Auswertung wurden die vorhandenen Messwerte verschiedenen Gruppen von Bodenausgangsgesteinen zugeordnet. Zudem wurde unterschieden, ob die Proben im Oberboden, im Unterboden oder im Untergrund genommen wurden. Bei den Oberböden wurde bei der Auswertung auch die unterschiedliche Nutzung (Acker, Grünland, Forst) berücksichtigt. Lockergesteine wurden aufgrund ihrer unterschiedlichen Zusammensetzung getrennt nach Nord- und Süddeutschland ausgewertet. Durch die Aufteilung der Daten in Teilkollektive wurden nicht in allen Fällen verlässliche Fallzahlen erreicht, sodass nur Hintergrundwerte mit Fallzahlen ?20 dargestellt werden. Das genaue Vorgehen bei der Ableitung ist dem Bericht der LABO-Bund/Länder-Arbeitsgemeinschaft Bodenschutz (2017): 'Hintergrundwerte für anorganische und organische Stoffe in Böden', 4. überarbeitete und ergänzte Auflage, zu entnehmen.
Zuletzt aktualisiert: 11.08.2025
folder_code Datenkataloge
/ Geodatensatz
arrow_right_alt
public Hydrogeologische Karte von Niedersachsen 1 : 50 000 – Mittlere jährliche Grundwasserneubildung des hydrologischen Winterhalbjahres für den 30-jährigen Zeitraum 1961-1990
Die Karte zeigt die mittlere jährliche Grundwasserneubildung des hydrologischen Sommerhalbjahres für den 30-jährigen Zeitraum 1991-2020. Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (HERRMANN et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche gemessene und anschließend räumlich interpolierte Klimabeobachtungsdaten des Deutschen Wetterdienstes genutzt. Diese sind die potenzielle Verdunstung, die auf Grundlage der FAO-Grasreferenzverdunstung berechnet wurde (DWD, unveröffentlicht) und der Niederschlag basierend auf dem REGNIE-Produkt (Rauthe et al, 2013), welche nach Richter korrigiert wurden (Richter, 1995). Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 100 x 100 m Raster für mGROWA22 herunterskaliert.
Zuletzt aktualisiert: 27.05.2025
folder_code Datenkataloge
/ Geodatensatz
INSPIRE Open Data
arrow_right_alt
public Tongehalte (17%) des obersten Mineralbodenhorizonts für alle Feldblöcke in Niedersachsen, Bremen und Hamburg gemäß § 17 der GAP-Konditionalitäten-Verordnung (GAPKondV) GLÖZ 6
Tongehalte des obersten Mineralbodenhorizonts für alle Feldblöcke in Niedersachsen, Bremen und Hamburg gemäß GLÖZ 6 GAPKondV § 17 „Mindestanforderung an die Bodenbedeckung in den sensibelsten Zeiten“. In dieser Karte sind für die aktuellen Feldblöcke die Bodenarten des obersten Mineralbodenhorizonts sowie die dazugehörenden Tongehalte nach Bodenkundlicher Kartieranleitung 5. Auflage (KA5) dargestellt. Basis für Niedersachsen sind die übersetzten Bodenschätzungsdaten 2018. Bereiche ohne Bodenschätzung sind durch die Bodenkarte 1:50.000 (BK50) aufgefüllt. Für Bremen werden die Bodendaten aus der Bodenschätzung und der Bodenübersichtskarte 1:50.000 (BÜK50). Für Hamburg stammen die Bodendaten aus der Bodenübersichtskarte 1:200.000 (BÜK200). Diese Karte gilt als Hinweiskarte auf die Tongehalte bezüglich der abweichenden Anforderungen zur Mindestbodenbedeckung. Hinweis: Diese Tonkarte (Tongehalt 17 %) bezieht sich nur auf GLÖZ 6 / GAPKondV § 17 „Mindestanforderung an die Bodenbedeckung in den sensibelsten Zeiten“. Für eine Ausnahme vom Pflugverbot über Winter für erosionsgefährdete Flächen (GLÖZ 5, KWasser1 und KWasser2) gilt weiterhin ein Tongehalt von über 25 % und ist geregelt in § 3 der niedersächsischen Erosionsschutzverordnung.
Zuletzt aktualisiert: 27.05.2025
folder_code Datenkataloge
/ Geodatensatz
INSPIRE Open Data
arrow_right_alt
settings Hydrogeologische Karte von Niedersachsen 1 : 50 000 – Mittlere jährliche Grundwasserneubildungsrate für den 30-jährigen Zeitraum 2031-2060 im hydrologischen Winterhalbjahr, Kein-Klimaschutz-Szenario (RCP8.5) (WMS Dienst)
Die Karte zeigt die modellierte mittlere jährliche Grundwasserneubildung für den 30-jährigen Zeitraum 2031-2060 im hydrologischen Winterhalbjahr (Nov.-Apr.) in mm/a berechnet mit dem „Kein-Klimaschutz“-Szenario (RCP8.5). Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche Klimaprojektionsdaten genutzt. Die Klimaprojektionsdaten stellen die Ergebnisse eines Ensembles aus verschiedenen Klimamodellen dar (das Niedersächsische Klimaensemble AR5-NI v2.1 siehe Hajati et al. (2022)). Die Daten wurden vom Deutschen Wetterdienst bereitgestellt. Datengrundlage dessen ist das EURO-CORDEX Ensemble (Jacob et al., 2014). Im Rahmen des BMVI-Expertennetzwerks fand durch den DWD eine Herunterskalierung von einem 12,5 km auf ein 5 km Raster statt. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden. Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 500 x 500 m Raster für mGROWA22 herunterskaliert.
Zuletzt aktualisiert: 10.12.2024
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
settings Chlorid-Hintergrundwerte im Grundwasser von Niedersachsen 1 : 500.000 (WMS Dienst)
Die natürliche Grundwasserbeschaffenheit ist maßgeblich durch die Wechselwirkung zwischen Grundwasser und der durchströmten Gesteinsmatrix geprägt. In Deutschland sind die Grundwässer jedoch durch anthropogene Handlungen wie z.B. Ackerbau, Rodung und Maßnahmen zur Grundwasserentnahme ubiquitär überprägt. Einflüsse einer Jahrhunderte alten Kulturlandschaft können dennoch als natürlich betrachtet werden (Funkel et al. 2004). Zur Erfüllung der Aufgaben aus der EG-Wasserrahmenrichtlinie (EG-WRRL) wurden für die hydrogeologischen Teilräume Niedersachsens (Elbracht et al., 2016) Hintergrundwerte u.a. für gelöstes Chlorid im Grundwasser ermittelt. Die Hintergrundwerte von gelöstem Chlorid umfassen die Gehalte, welche sich unter natürlichen Bedingungen durch den Kontakt des Grundwassers mit der umgebenden Gesteinsmatrix des Grundwasserleiters sowie in Kontakt mit einer Jahrhunderte alten Kulturlandschaft einstellen. Die Karte zeigt farblich differenziert Klassen der Chlorid-Hintergrundwerte der hydrogeologischen Teilräume Niedersachsens. Gemäß der deutschen Trinkwasserverordnung beträgt der Grenzwert für Chlorid im Trinkwasser 250 mg/L, der Schwellenwert für Grundwasser ist identisch. Durch Versalzungen im Küstenraum und in der Nähe natürlich vorkommender Salzstöcke kann es lokal zu erheblich höheren Konzentrationen kommen. Durch das Auswählen eines Teilraumes gelangt man zu weiterführenden Informationen (z.B. Probenanzahl, zusammengefasste Teilräume, etc.). Informationen zu den Daten: Die genutzten Grundwasseranalysen stammen aus der Datenbank des Niedersächsischen Bodeninformationssystems (NIBIS). Hintergrundwerte sind definiert als das 90.-Perzentil der Normalpopulation der geogenen Konzentration des analysierten Parameters. Zur Bestimmung der Hintergrundwerte wurde die jeweils aktuellste Analyse einer Grundwassermessstelle verwendet. Bei zu geringer Probenzahl (n < 10) wurden, soweit möglich, lithologisch ähnliche Teilräume zu einem gemeinsamen Hintergrundwert zusammengefasst. Die Ermittlung der Hintergrundwerte folgte dem Verfahren zur statistischen Auswertung der Daten mittels Wahrscheinlichkeitsnetz der Staatlichen Geologischen Dienste (Wagner et al., 2011). Quellen: ELBRACHT, J., MEYER, R. & REUTTER, E. (2016): Hydrogeologische Räume und Teilräume in Niedersachsen. – GeoBerichte 3, LBEG, Hannover. DOI: 10.48476/geober_3_2016. Funkel R., Voigt H.-J., Wendland F., Hannappel S. (2004): Die natürliche ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland, Forschungszentrum Jülich GmbH (47), ISBN: 3-89336-353-X. WAGNER, B., WALTER, T., HIMMELSBACH, T., CLOS, P., BEER, A., BUDZIAK, D., DREHER, T., FRITSCHE, H.-G., HÜBSCHMANN, M., MARCZINEK, S., PETERS, A., POESER, H., SCHUSTER, H., STEINEL, A., WAGNER, F. & WIRSING, G. (2011): Hydrogeochemische Hintergrundwerte der Grundwässer Deutschlands als Web Map Service. – Grundwasser 16(3): 155-162; Springer, Berlin / Heidelberg.
Zuletzt aktualisiert: 27.05.2025
folder_code Datenkataloge
/ Geodatendienst
arrow_right_alt
1101 - 1110 von 92.775 Ergebnissen
first_page arrow_left_alt 107 108 109 110
111
112 113 114 115 arrow_right_alt last_page

Räumliche Begrenzung der Suche festlegen

Umweltinformationsportal des Landes Niedersachsen
Logo
©
Niedersächsisches Ministerium für
Umwelt, Energie und Klimaschutz
Über Kontakt Impressum Datenschutz Barrierefreiheit
MVP